Deep reinforcement learning for wireless networks / F. Richard Yu, Ying He.

This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu, F. Richard (Author), He, Ying (Author)
Format: Ebook
Language:English
Published: Cham, Switzerland : Springer, [2019]
Series:SpringerBriefs in electrical and computer engineering.
Subjects:
Online Access:Springer eBooks

MARC

LEADER 00000czm a2200000 i 4500
005 20221116132832.0
006 m o d
007 cr un|---|ucuu
008 190126s2019 sz o 000 0 eng d
011 |a Z3950 Search: @or @attr 1=7 "9783030105457" @attr 1=7 "9783030105464" 
011 |a Z3950 Record: 0 of 12 
020 |a 3030105458  |q Internet 
020 |a 9783030105457  |q Internet 
020 |a 3030105466  |q Internet 
020 |a 9783030105464  |q Internet 
020 |z 3030105474  |q print 
020 |z 9783030105471  |q print 
035 |a (OCoLC)1083463760 
035 |a (EDS)EDS19798722 
037 |a com.springer.onix.9783030105464  |b Springer Nature 
040 |a EBLCP  |b eng  |e rda  |c EBLCP  |d YDX  |d GW5XE  |d UAB  |d VT2  |d OCLCF  |d UX1  |d OH1  |d COO  |d LEAUB  |d UKMGB  |d LQU  |d OCLCQ  |d CEF  |d LVT  |d LEATE  |d UKAHL  |d N$T  |d OCLCO  |d Z5A 
050 4 |a Q325.6  |b .Y84 2019 
082 0 4 |a 006.31  |2 23 
099 |a 006.31 YU 
100 1 |a Yu, F. Richard,  |e author.  |9 1099011 
245 1 0 |a Deep reinforcement learning for wireless networks /  |c F. Richard Yu, Ying He. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2019] 
300 |a 1 online resource (78 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a SpringerBriefs in Electrical and Computer Engineering 
505 0 |a Intro; Preface; A Brief Journey Through D̀̀eep Reinforcement Learning for Wireless Networks''; Contents; 1 Introduction to Machine Learning; 1.1 Supervised Learning; 1.1.1 k-Nearest Neighbor (k-NN); 1.1.2 Decision Tree (DT); 1.1.3 Random Forest; 1.1.4 Neural Network (NN); Random NN; Deep NN; Convolutional NN; Recurrent NN; 1.1.5 Support Vector Machine (SVM); 1.1.6 Bayes' Theory; 1.1.7 Hidden Markov Models (HMM); 1.2 Unsupervised Learning; 1.2.1 k-Means; 1.2.2 Self-Organizing Map (SOM); 1.3 Semi-supervised Learning; References; 2 Reinforcement Learning and Deep Reinforcement Learning -- 
505 8 |a 2.1 Reinforcement Learning2.2 Deep Q-Learning; 2.3 Beyond Deep Q-Learning; 2.3.1 Double DQN; 2.3.2 Dueling DQN; References; 3 Deep Reinforcement Learning for Interference Alignment Wireless Networks; 3.1 Introduction; 3.2 System Model; 3.2.1 Interference Alignment; 3.2.2 Cache-Equipped Transmitters; 3.3 Problem Formulation; 3.3.1 Time-Varying IA-Based Channels; 3.3.2 Formulation of the Network's Optimization Problem; System State; System Action; Reward Function; 3.4 Simulation Results and Discussions; 3.4.1 TensorFlow; 3.4.2 Simulation Settings; 3.4.3 Simulation Results and Discussions -- 
505 8 |a 3.5 Conclusions and Future WorkReferences; 4 Deep Reinforcement Learning for Mobile Social Networks; 4.1 Introduction; 4.1.1 Related Works; 4.1.2 Contributions; 4.2 System Model; 4.2.1 System Description; 4.2.2 Network Model; 4.2.3 Communication Model; 4.2.4 Cache Model; 4.2.5 Computing Model; 4.3 Social Trust Scheme with Uncertain Reasoning; 4.3.1 Trust Evaluation from Direct Observations; 4.3.2 Trust Evaluation from Indirect Observations; Belief Function; Dempster's Rule of Combining Belief Functions; 4.4 Problem Formulation; 4.4.1 System State; 4.4.2 System Action; 4.4.3 Reward Function -- 
505 8 |a 4.5 Simulation Results and Discussions4.5.1 Simulation Settings; 4.5.2 Simulation Results; 4.6 Conclusions and Future Work; References. 
520 |a This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme. There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results. Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer scientists, programmers, and policy makers will also find this brief to be a useful tool. 
588 0 |a Print version record. 
650 0 |a Reinforcement learning.  |9 339765 
650 0 |a Wireless communication systems.  |9 327927 
700 1 |a He, Ying,  |e author.  |9 890991 
776 0 8 |i Print version:  |a Yu, F. Richard.  |t Deep Reinforcement Learning for Wireless Networks.  |d Cham : Springer, ©2019  |z 9783030105457 
776 1 8 |w (OCoLC)1083356606  |w (OCoLC)1083618073  |w (OCoLC)1086472797  |w (OCoLC)1105174245  |w (OCoLC)1110783696  |w (OCoLC)1117479571  |w (OCoLC)1117786402  |w (OCoLC)1122811913  |w (OCoLC)1156343229  |w (OCoLC)1162810551 
830 0 |a SpringerBriefs in electrical and computer engineering.  |9 292318 
856 4 0 |u https://ezproxy.aut.ac.nz/login?url=https://link.springer.com/10.1007/978-3-030-10546-4  |z Springer eBooks  |x TEMPORARY ERM URL 
942 |c EB  |n 0 
999 |c 1532302  |d 1532302 
Availability
Requests
Request this item Request this AUT item so you can pick it up when you're at the library.
Interlibrary Loan With Interlibrary Loan you can request the item from another library. It's a free service.