Vibration and structural acoustics analysis : current research and related technologies / C.M.A. Vasques, J. Dias Rodrigues, editors.

Saved in:
Bibliographic Details
Corporate Author: SpringerLink ebooks - Engineering (2011)
Other Authors: Rodrigues, J. Dias, Vasques, C. M. A.
Format: Ebook
Language:English
Published: Dordrecht ; New York : Springer, c2011.
Subjects:
Online Access:Springer eBooks

MARC

LEADER 00000czm a22000004i 4500
005 20221102161153.0
007 cr n
008 110726s2011 gw a ob 000 0 eng
010 |z  2011935121 
011 |a Changed OCLC from 896395534 to 747105231 
011 |a EDS identifier machine added through SSID matching 
011 |a GMD replaced with 3XX, non-RDA. 
020 |a 1283476657  |q Internet 
020 |a 9400717032  |q Internet 
020 |a 9781283476652  |q Internet 
020 |a 9789400717039  |q Internet 
020 |z 1283476657  |q Internet 
020 |z 9400717024 (hdbk. (acid-free paper)) 
020 |z 9781283476652  |q Internet 
020 |z 9789400717022 (hdbk. (acid-free paper)) 
035 |a (ATU)b12850159 
035 |a (EDS)EDS930942 
035 |a (OCoLC)747105231 
040 |a BTCTA  |c BTCTA  |d YDXCP  |d UKMGB  |d BWX  |d DCU  |d CDX  |d DLC  |d WaSeSS  |d ATU 
042 |a lccopycat 
050 4 |a Online 
082 0 4 |a 624.17  |2 23 
245 0 0 |a Vibration and structural acoustics analysis :  |b current research and related technologies /  |c C.M.A. Vasques, J. Dias Rodrigues, editors. 
260 |a Dordrecht ;  |a New York :  |b Springer,  |c c2011. 
300 |a 1 electronic document. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Description based on print version record. 
504 |a Includes bibliographical references. 
505 0 |a 1. The Dynamic Analysis of Thin Structures Using a Radial Interpolator Meshless Method -- 2. Vibration Testing for the Evaluation of the Effects of Moisture Content on the In-Plane Elastic Constants of Wood Used in Musical Instruments -- 3. Short-Time Autoregressive (STAR) Modeling for Operational Modal Analysis of Non-stationary Vibration -- 4. A Numerical and Experimental Analysis for the Active Vibration Control of a Concrete Placing Boom -- 5. Modeling and Testing of a Concrete Pumping Group Control System -- 6. Vibration Based Structural Health Monitoring and the Modal Strain Energy Damage Index Algorithm Applied to a Composite T-Beam -- 7. An Efficient Sound Source Localization Technique via Boundary Element Method -- 8. Dispersion Analysis of Acoustic Circumferential Waves Using Time-Frequency Representations -- 9. Viscoelastic Damping Technologies: Finite Element Modeling and Application to Circular Saw Blades -- 10. Vibroacoustic Energy Diffusion Optimization in Beams and Plates by Means of Distributed Shunted Piezoelectric Patches -- 11. Identification of Reduced Models from Optimal Complex Eigenvectors in Structural Dynamics and Vibroacoustics -- -- 
505 0 0 |g 1.  |t The Dynamic Analysis of Thin Structures Using a Radial Interpolator Meshless Method /  |r L.M.J.S. Dinis, R.M. Natal Jorge, and J. Belinha --  |g 1.1.  |t Introduction --  |g 1.2.  |t Overviewof the Stateof the Art --  |g 1.3.  |t The Natural Neighbour Radial Point Interpolation Method --  |g 1.4.  |t Dynamic Discrete System of Equations --  |g 1.5.  |t Dynamic Examples --  |g 1.5.1.  |t Cantilever Beam --  |g 1.5.2.  |t Variable Cross Section Beams --  |g 1.5.3.  |t Shear-Wall --  |g 1.5.4.  |t Square Plates --  |g 1.5.5.  |t Shallow Shell --  |g 1.6.  |t Prospects for the Future --  |g 1.7.  |t Summary --  |g 1.8.  |t Selected Bibliography --  |g 2.  |t Vibration Testing for the Evaluation of the Effects of Moisture Content on the In-Plane Elastic Constants of Wood Used in Musical Instruments /  |r M.A. Pérez Martínez, P. Poletti, and L. Gil Espert --  |g 2.1.  |t Introduction --  |g 2.2.  |t Overviewof the Stateof the Art --  |g 2.3.  |t Orthotropic Nature of Wood Properties --  |g 2.4.  |t Influence of Moisture Changes on Wood --  |g 2.5.  |t Experimental Modal Analysis of Wooden Specimens --  |g 2.6.  |t Numerical Model of Wooden Plate --  |g 2.6.1.  |t The Finite Element Method --  |g 2.6.2.  |t Free Vibrations of Kirchhoff Plates --  |g 2.6.3.  |t Perturbationof the Equationof Motion --  |g 2.7.  |t Elastic Constants from Plate Vibration Measurements --  |g 2.8.  |t Results --  |g 2.9.  |t Concluding Remarks --  |g 2.10.  |t Prospects for the Future --  |g 2.11.  |t Summary --  |g 3.  |t Short-Time Autoregressive (STAR) Modeling for Operational Modal Analysis of Non-stationary Vibration /  |r V.-H. Vu, M. Thomas, A.A. Lakis, and L. Marcouiller --  |g 3.1.  |t Introduction --  |g 3.2.  |t Overviewof the Stateof the Art --  |g 3.2.1.  |t Operational Modal Analysis --  |g 3.2.2.  |t Non-stationary Vibration --  |g 3.2.3.  |t Fluid-Structure Interaction --  |g 3.2.4.  |t Development of a New Method for Investigating Modal Parameters of Non-stationary Systems by Operational Modal Analysis --  |g 3.3.  |t Vector Autoregressive (VAR)Modeling --  |g 3.4.  |t The Short Time Autoregressive (STAR) Method --  |g 3.4.1.  |t Order Updating and a Criterion for Minimum Model Order Selection --  |g 3.4.2.  |t Working Procedure --  |g 3.5.  |t Numerical Simulation on a Mechanical System --  |g 3.5.1.  |t Discussion on Data Block Length --  |g 3.5.2.  |t Simulation on Mechanical System with Time-Dependent Parameters --  |g 3.6.  |t Experimental Application on an Emerging Steel Plate --  |g 3.7.  |t Prospects for the Future --  |g 3.8.  |t Summary --  |g 3.9.  |t Selected Bibliography --  |g 4.  |t A Numerical and Experimental Analysis for the Active Vibration Control of a Concrete Placing Boom /  |r G. Cazzulani, M. Ferrari, F. Resta, and F. Ripamonti --  |g 4.1.  |t Introduction --  |g 4.2.  |t Overviewof the Stateof the Art --  |g 4.3.  |t The System --  |g 4.3.1.  |t Test Rig --  |g 4.3.2.  |t Numerical Model --  |g 4.4.  |t Active Modal Control --  |g 4.4.1.  |t Independent Modal Control --  |g 4.4.2.  |t The Modal Observer --  |g 4.4.3.  |t Numerical Analysis of Modal Control --  |g 4.5.  |t Feed-Forward Control --  |g 4.5.1.  |t The Feed-Forward Control Logic --  |g 4.5.2.  |t Numerical Analysis of the Feed-Forward Control --  |g 4.6.  |t Experimental Testing --  |g 4.7.  |t Prospects for the Future --  |g 4.8.  |t Summary --  |g 4.9.  |t Selected Bibliography --  |g 5.  |t Modeling and Testing of a Concrete Pumping Group Control System /  |r C. Ghielmetti, H. Giberti, and F. Resta --  |g 5.1.  |t Introduction --  |g 5.2.  |t Overviewof the Stateof the Art --  |g 5.3.  |t Descriptionof the Entire System --  |g 5.4.  |t Experimental Tests --  |g 5.5.  |t Mathematical Model --  |g 5.5.1.  |t Oil Continuity Equations --  |g 5.5.2.  |t Concrete Continuity Equations --  |g 5.5.3.  |t Equationsof Motion --  |g 5.6.  |t Comparison Between Numerical and Experimental Results --  |g 5.7.  |t Control System Design --  |g 5.8.  |t Prospects for the Future --  |g 5.9.  |t Summary --  |g 5.10.  |t Selected Bibliography --  |g 6.  |t Vibration Based Structural Health Monitoring and the Modal Strain Energy Damage Index Algorithm Applied to a Composite T-Beam /  |r R. Loendersloot, T.H. Ooijevaar, L. Warnet, A. de Boer, and R. Akkerman --  |g 6.1.  |t Introduction --  |g 6.2.  |t Overviewof the Stateof the Art --  |g 6.2.1.  |t Vibration Based Structural Health Monitoring --  |g 6.2.2.  |t Modal Strain Energy Damage Index Algorithm --  |g 6.3.  |t T-Beam with T-Joint Stiffener --  |g 6.4.  |t Theory of the Modal Strain Energy Damage Index Algorithm --  |g 6.5.  |t Finite Element Model --  |g 6.6.  |t Experimental Analysis of the T-Beam --  |g 6.7.  |t Results and Discussion --  |g 6.7.1.  |t Validation of Numerical Model --  |g 6.7.2.  |t Length and Starting Point of Delamination --  |g 6.7.3.  |t Position of Evaluation Points --  |g 6.7.4.  |t Numberof Evaluation Points --  |g 6.7.5.  |t Incorporation of Torsion Modes --  |g 6.8.  |t Prospects for the Future --  |g 6.9.  |t Summary --  |g 6.10.  |t Selected Bibliography --  |g 7.  |t An Efficient Sound Source Localization Technique via Boundary Element Method /  |r A. Seçgin and A.S. Sarıgül --  |g 7.1.  |t Introduction --  |g 7.2.  |t Overviewof the Stateof the Art --  |g 7.3.  |t Helmholtz Integral Equation and Boundary Element Method --  |g 7.3.1.  |t Full-Space Case --  |g 7.3.2.  |t Half-Space Case --  |g 7.4.  |t Theoretical Examples: Sound Field Determination --  |g 7.5.  |t Case Study: Sound Source Localization --  |g 7.5.1.  |t Surface Velocity Measurements --  |g 7.5.2.  |t Boundary Element Operations --  |g 7.5.3.  |t Sound Source Identification and Characterization --  |g 7.6.  |t Prospects for the Future --  |g 7.7.  |t Summary --  |g 7.8.  |t Selected Bibliography --  |g 8.  |t Dispersion Analysis of Acoustic Circumferential Waves Using Time-Frequency Representations /  |r R. Latif, M. Laaboubi, E.H. Aassif, and G. Maze --  |g 8.1.  |t Introduction --  |g 8.2.  |t Overviewof the Stateof the Art --  |g 8.3.  |t Time-Frequency Representations --  |g 8.3.1.  |t Wigner-Ville Distribution --  |g 8.3.2.  |t Spectrogram Distribution --  |g 8.3.3.  |t Reassignment Spectrogram --  |g 8.4.  |t Acoustic Measured Signal Backscattered by an Elastic Tube --  |g 8.4.1.  |t Experimental Setup --  |g 8.4.2.  |t Measured Acoustic Response --  |g 8.4.3.  |t Resonance Spectrum --  |g 8.5.  |t Time-Frequency Images of Experimental Acoustic Signal --  |g 8.5.1.  |t Spectrogram and Wigner-Ville Images --  |g 8.5.2.  |t Reassigned Spectrogram Image --  |g 8.6.  |t Dispersionof the Circumferential Waves --  |g 8.6.1.  |t Determination of Dispersion Curves of Circumferential Waves by the Theoretical Method --  |g 8.6.2.  |t Determination of Dispersion Curves of Circumferential Waves by the Reassigned Spectrogram Image --  |g 8.7.  |t Prospects for the Future --  |g 8.8.  |t Summary --  |g 8.9.  |t Selected Bibliography --  |g 9.  |t Viscoelastic Damping Technologies: Finite Element Modeling and Application to Circular Saw Blades /  |r C.M.A. Vasques and L.C. Cardoso --  |g 9.1.  |t Introduction --  |g 9.2.  |t Overviewof the Stateof the Art --  |g 9.3.  |t Configurations of Viscoelastic Damping Treatments --  |g 9.4.  |t Viscoelastic Constitutive Behavior --  |g 9.5.  |t Finite Element Modeling of Viscoelastic Structural Systems --  |g 9.5.1.  |t Some Comments on Deformation Theories --  |g 9.5.2.  |t Spatial Modelingand Meshing --  |g 9.5.3.  |t Damping Modeling and Solution Approaches --  |g 9.5.4.  |t Frequency- and Time-Domain Implementations --  |g 9.5.5.  |t Commercial FESoftware --  |g 9.6.  |t Vibroacoustic Simulation and Analysis --  |g 9.7.  |t Circular Saw Blades Damping: Modeling, Analysis and Design --  |g 9.7.1.  |t Geometric and Material Properties of the "Saw" --  |g 9.7.2.  |t FE Modeling and Vibroacoustic Media Discretization --  |g 9.7.3.  |t Results --  |g 9.8.  |t Prospects for the Future --  |g 9.9.  |t Summary --  |g 10.  |t Vibroacoustic Energy Diffusion Optimization in Beams and Plates by Means of Distributed Shunted Piezoelectric Patches /  |r M. Collet, M. Ouisse, K.A. Cunefare, M. Ruzzene, B. Beck, L. Airoldi, and F. Casadei --  |g 10.1.  |t Introduction --  |g 10.2.  |t Overviewof the Stateof the Art --  |g 10.3.  |t Classical Tools for Designing RL and RCneg Shunt Circuits --  |g 10.3.1.  |t Piezoelectric Modeling and Shunt Circuit Design --  |g 10.4.  |t Controlling the Dispersion in Beams and Plates --  |g 10.4.1.  |t Waves Dispersion Control by Using RL and Negative Capacitance Shunts on Periodically Distributed Piezoelectric Patches --  |g 10.4.2.  |t Periodically Distributed Shunted Piezoelectric Patches for Controlling Structure Borne Noise --  |g 10.5.  |t Optimizing Wave's Diffusionin Beam --  |g 10.5.1.  |t Description and Modeling of a Periodic Beam System --  |g 10.5.2.  |t Optimization of Power Flow Diffusion by Negative Capacitance Shunt Circuits --  |g 10.5.3.  |t Optimization of Wave Reflection and Transmission --  |g 10.6.  |t Prospects for the Future --  |g 10.7.  |t Summary --  |g 11.  |t Identification of Reduced Models from Optimal Complex Eigenvectors in Structural Dynamics and Vibroacoustics /  |r M. Ouisse and E. Foltête --  |g 11.1.  |t Introduction --  |g 11.2.  |t Overviewof the Stateof the Art --  |g 11.3.  |t Properness Condition in Structural Dynamics --  |g 11.3.1.  |t Properness of Complex Modes --  |g 11.3.2.  |t Illustration of Properness Impact on Inverse Procedure --  |g 11.3.3.  |t Properness Enforcement --  |g 11.3.4.  |t Experimental Illustration --  |g 11.4.  |t Extension of Properness to Vibroacoustics --  |g 11.4.1.  |t Equationsof Motion --  |g 11.4.2.  |t Complex Modes for Vibroacoustics --  |g 11.4.3.  |t Properness for Vibroacoustics --  |g 11.4.4.  |t Methodologies for Properness Enforcement --  |g 11.4.5.  |t Numerical Illustration --  |g 11.4.6.  |t Experimental Test-Case --  |g 11.5.  |t Prospects for the Future --  |g 11.6.  |t Summary --  |g 11.7.  |t Selected Bibliography. 
538 |a Mode of access: World Wide Web. 
588 |a Automated GMD conversion. 
650 0 |a Acoustical engineering.  |9 313352 
650 0 |a Structural analysis (Engineering)  |9 324588 
700 1 |a Rodrigues, J. Dias.  |9 1090337 
700 1 |a Vasques, C. M. A.  |9 1090336 
710 2 |a SpringerLink ebooks - Engineering (2011) 
856 4 0 |u https://ezproxy.aut.ac.nz/login?url=https://link.springer.com/10.1007/978-94-007-1703-9  |z Springer eBooks  |x TEMPORARY ERM URL 
907 |a .b12850159  |b 12-03-21  |c 28-10-15 
942 |c EB 
998 |a none  |b 28-10-15  |c m  |d z   |e -  |f eng  |g gw   |h 0 
999 |c 1247600  |d 1247600 
Availability
Requests
Request this item Request this AUT item so you can pick it up when you're at the library.
Interlibrary Loan With Interlibrary Loan you can request the item from another library. It's a free service.