Academic Journal

Disrupted frontostriatal connectivity in primary insomnia: a DTI study.

Bibliographic Details
Title: Disrupted frontostriatal connectivity in primary insomnia: a DTI study.
Authors: Chen L; School of Life Science and Technology, Xidian University, Xi'an, 710071, China.; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, 710071, China., Shao Z; School of Life Science and Technology, Xidian University, Xi'an, 710071, China.; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, 710071, China., Xu Y; School of Life Science and Technology, Xidian University, Xi'an, 710071, China.; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, 710071, China., Wang S; School of Life Science and Technology, Xidian University, Xi'an, 710071, China.; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, 710071, China., Zhang M; School of Life Science and Technology, Xidian University, Xi'an, 710071, China.; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, 710071, China., Liu S; School of Life Science and Technology, Xidian University, Xi'an, 710071, China.; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, 710071, China., Wen X; School of Life Science and Technology, Xidian University, Xi'an, 710071, China.; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, 710071, China., Liu B; Department of Neurology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, People's Republic of China., Xia X; Xi'an Aerosemi Technology Co., LTD, Xi'an, China., Yuan K; School of Life Science and Technology, Xidian University, Xi'an, 710071, China. kyuan@xidian.edu.cn.; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, 710071, China. kyuan@xidian.edu.cn.; Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, China. kyuan@xidian.edu.cn.; School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an, Shaanxi, 710126, People's Republic of China. kyuan@xidian.edu.cn., Yu D; Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, China. fmydh@imust.edu.cn.
Source: Brain imaging and behavior [Brain Imaging Behav] 2021 Oct; Vol. 15 (5), pp. 2524-2531. Date of Electronic Publication: 2021 Mar 02.
Abstract: Dysfunction of the sleep-wake transition is considered to be associated with the pathology of patients with primary insomnia (PI). Previous animal study had reported that brain circuits between the striatum and cortex can regulate sleep-wake transitions. So far, few studies have systematically explored the structural connectivity of the striatum-centered circuits and their potential roles in patients with PI. In this study, we chosen the striatum as the seed and 10 priori target regions as masks to assess the structural connectivity by using seed-based classification with a diffusion tensor imaging (DTI) probabilistic tractography method. Track strengths of the striatum-centered circuits were compared between 22 patients with PI (41.27 ± 9.21 years) and 30 healthy controls (HC) (35.2 ± 8.14 years). Pittsburgh Sleep Quality Index (PSQI) was used to measure the sleep quality in all participants. Lower track strengths (left striatum- anterior cingulate cortex (ACC), left striatum- dorsal anterior cingulate cortex (dACC), left striatum-Hippocampus, and right striatum-Hippocampus) were observed in patients with PI compared to HC. Additionally, the lower track strengths of brain circuits mentioned above were negatively correlated with PSQI. Taken together, our findings revealed the lower tract strength of frontostriatal circuits in patients with PI and HC, which provided the implications of the system-level structural connections of frontostriatal circuits in the pathology of PI. We suggested that the track strengths of the frontostriatal circuits calculated from DTI can be the potential neuroimaging biomarkers of the sleep quality in patients with PI.
(© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.)
Publication Type: Journal Article
Language: English
Journal Info: Publisher: Springer Country of Publication: United States NLM ID: 101300405 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1931-7565 (Electronic) Linking ISSN: 19317557 NLM ISO Abbreviation: Brain Imaging Behav Subsets: MEDLINE
Imprint Name(s): Original Publication: Secaucus, NJ : Springer
MeSH Terms: Diffusion Tensor Imaging* , Sleep Initiation and Maintenance Disorders*/diagnostic imaging, Cerebral Cortex ; Gyrus Cinguli ; Humans ; Magnetic Resonance Imaging
References: Backhaus, J., Junghanns, K., Born, J., Hohaus, K., Faasch, F., & Hohagen, F. (2006). Impaired declarative memory consolidation during sleep in patients with primary insomnia: Influence of sleep architecture and nocturnal cortisol release. Biological Psychiatry, 60(12), 1324–1330. (PMID: 1687614010.1016/j.biopsych.2006.03.051)
Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J. T., & Aldroubi, A. (2000). Vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine, 44(4), 625–632. (PMID: 1102551910.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O)
Behrens, T. E. J., Johansenberg, H., Woolrich, M. W., Smith, S. M., Wheelerkingshott, C. A. M., Boulby, P. A.,.. . Ciccarelli, O. (2003). Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6(7), 750–757. (PMID: 1280845910.1038/nn1075)
Bi, Y., Yuan, K., Yu, D., Wang, R., Li, M., Li, Y.,.. . Tian, J. (2017). White matter integrity of central executive network correlates with enhanced brain reactivity to smoking cues. Human Brain Mapping, 38(12), 6239–6249. (PMID: 28960762686713610.1002/hbm.23830)
Braun, A. R., Balkin, T. J., Wesenten, N. J., Carson, R. E., Varga, M., Baldwin, P.,.. . Herscovitch, P. (1997). Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain, 120(7), 1173–1197. (PMID: 923663010.1093/brain/120.7.1173)
Bunge, S. A., Burrows, B., & Wagner, A. D. (2004). Prefrontal and hippocampal contributions to visual associative recognition: Interactions between cognitive control and episodic retrieval. Brain & Cognition, 56(2), 141–152. (PMID: 10.1016/j.bandc.2003.08.001)
Buysse, D. J., Reynolds, C. F., III., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193–213. https://doi.org/10.1016/0165-1781(89)90047-4 . (PMID: 10.1016/0165-1781(89)90047-42748771)
Carey, C. (2016). DSM-5 ® Guidebook: the essential companion to the diagnostic and statistical manual of mental disorders. 5th edn. In: Black DW, Grant JE (567 pp., ISBN 9781585624652). American Psychiatric Association Publishing, Arlington, 2014. Irish Journal of Psychological Medicine, 33(02), 133–134.
Cohen, M. X., Schoenebake, J., Elger, C. E., & Weber, B. (2009). Connectivity-based segregation of the human striatum predicts personality characteristics. Nature Neuroscience, 12(1), 32–34. (PMID: 1902988810.1038/nn.2228)
Den Bos, W. V., Rodriguez, C. A., Schweitzer, J. B., & Mcclure, S. M. (2014). Connectivity strength of dissociable striatal tracts predict individual differences in temporal discounting. The Journal of Neuroscience, 34(31), 10298–10310. (PMID: 25080591457757010.1523/JNEUROSCI.4105-13.2014)
Fortierbrochu, E., & Morin, C. M. (2013). Cognitive impairment in individuals with insomnia: clinical significance and correlates. Sleep, 37(11), 1787–1798. (PMID: 10.5665/sleep.4172)
Fulda, S., & Schulz, H. (2001). Cognitive dysfunction in sleep disorders. Sleep Medicine Reviews, 5(6), 423–445. (PMID: 1253115210.1053/smrv.2001.0157)
Gadea-Ciria, M., Stabler, H., Lloyd, K. G., & Bartholini, G. (1973). Acetylcholine release within the cat striatum during the sleep–wakefulness cycle. Nature, 243(5409), 518–519. (PMID: 435523610.1038/243518a0)
Goel, N., Rao, H., Durmer, J. S., & Dinges, D. F. (2005). Neurocognitive consequences of sleep deprivation. Seminars in Neurology, 29(04), 320–339. (PMID: 10.1055/s-0029-1237117)
Guo, W., Liu, F., Liu, Z., Gao, K., Xiao, C., Chen, H., & Zhao, J. (2012). Right lateralized white matter abnormalities in first-episode, drug-naive paranoid schizophrenia. Neuroscience Letters, 531(1), 5–9. (PMID: 2302250710.1016/j.neulet.2012.09.033)
Hasegawa, H., Selway, R., Gnoni, V., Beniczky, S., & Rosenzweig, I. (2020). The subcortical belly of sleep: New possibilities in neuromodulation of basal ganglia? Sleep Medicine Reviews, 52, 101317. (PMID: 32446196767936310.1016/j.smrv.2020.101317)
Huang, Z., Liang, P., Jia, X., Zhan, S., Li, N., Ding, Y.,.. . Li, K. (2012). Abnormal amygdala connectivity in patients with primary insomnia: Evidence from resting state fMRI. European Journal of Radiology, 81(6), 1288–1295. (PMID: 2145894310.1016/j.ejrad.2011.03.029)
Iranzo, A., Stefani, A., Ninerolabaizan, A., Stokner, H., Serradell, M., Vilas, D., & Lomena, F. (2020). Left-hemispheric predominance of nigrostriatal deficit in isolated REM sleep behavior disorder. Neurology, 94(15), e1605–e1613. (PMID: 3216103110.1212/WNL.0000000000009246)
Johansenberg, H., Behrens, T. E. J., Robson, M. D., Drobnjak, I., Rushworth, M. F. S., Brady, J. M.,.. . Matthews, P. M. (2004). Changes in connectivity profiles define functionally-distinct regions in human medial frontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 101(36), 13335–13340. (PMID: 10.1073/pnas.0403743101)
Klumpp, H., Roberts, J., Kapella, M. C., Kennedy, A. E., Kumar, A., & Phan, K. L. (2017). Subjective and objective sleep quality modulate emotion regulatory brain function in anxiety and depression. Depression & Anxiety, 34(7), 651–660. (PMID: 2841960710.1002/da.22622)
Lazarus, M., Huang, Z., Lu, J., Urade, Y., & Chen, J. (2012). How do the basal ganglia regulate sleep–wake behavior? Trends in Neurosciences, 35(12), 723–732. (PMID: 2285852310.1016/j.tins.2012.07.001)
Leger, D., & Bayon, V. (2010). Societal costs of insomnia. Sleep Medicine Reviews, 14(6), 379–389. (PMID: 2035991610.1016/j.smrv.2010.01.003)
Leong, J. K., Pestilli, F., Wu, C. C., Samanezlarkin, G. R., & Knutson, B. (2016). White-matter tract connecting anterior insula to nucleus accumbens correlates with reduced preference for positively skewed gambles. Neuron, 89(1), 63–69. (PMID: 26748088472015410.1016/j.neuron.2015.12.015)
Li, M., Yan, J., Li, S., Wang, T., Wen, H., Yin, Y.,.. . Jiang, G. (2018). Altered gray matter volume in primary insomnia patients: a DARTEL-VBM study. Brain Imaging and Behavior, 12(6), 1759–1767. (PMID: 2941124010.1007/s11682-018-9844-x)
Li, S., Tian, J., Bauer, A., Huang, R., Wen, H., Li, M., & Jiang, G. (2016). Reduced integrity of right lateralized white matter in patients with primary insomnia: a diffusion-tensor imaging study. Radiology, 280(2), 520–528. (PMID: 2704598710.1148/radiol.2016152038)
Li, Y., Wang, E., Zhang, H., Dou, S., Liu, L., Tong, L.,.. . Shi, D. (2014). Functional connectivity changes between parietal and prefrontal cortices in primary insomnia patients: evidence from resting-state fMRI. European Journal of Medical Research, 19(1), 32–32. (PMID: 24915847406228110.1186/2047-783X-19-32)
López-Virgen, V., Zárate-López, D., Adirsch, F. L., Collas-Aguilar, J., & González-Pérez, Ó. (2015). Effects of sleep deprivation in hippocampal neurogenesis. Gaceta Medica De Mexico, 151(1), 99. (PMID: 25739489)
Luisa, D. V., Nelson, A. B., Michele, B., Juliana, N., Giulio, T., & Chiara, C. (2016). Loss of sleep affects the ultrastructure of pyramidal neurons in the adolescent mouse frontal cortex. Sleep, 39(4), 861. (PMID: 10.5665/sleep.5644)
Macey, P. M., Rajesh, K., Woo, M. A., Valladares, E. M., Yan-Go, F. L., & Harper, R. M. (2008). Brain structural changes in obstructive sleep apnea. Sleep, 31(7), 7.
Moiseeva, N. I., Movissiants, S. A., & Trohatchev, A. I. (1969). Characteristics of bioelectrical events in subcortical structures during different phases of sleep in man. Electroencephalography & Clinical Neurophysiology, 27(7), 698.
Nofzinger, E. A., Buysse, D. J., Germain, A., Price, J. C., Miewald, J. M., & Kupfer, D. J. (2004). Functional Neuroimaging Evidence for Hyperarousal in Insomnia. American Journal of Psychiatry, 161(11), 2126–2128. (PMID: 10.1176/appi.ajp.161.11.2126)
Ohayon, M. M. (2002). Epidemiology of insomnia: what we know and what we still need to learn. Sleep Medicine Reviews, 6(2), 97–111. (PMID: 1253114610.1053/smrv.2002.0186)
Oosterman, J. M., Van Someren, E. J. W., Vogels, R. L. C., Van Harten, B., & Scherder, E. J. A. (2009). Fragmentation of the rest-activity rhythm correlates with age‐related cognitive deficits. Journal of Sleep Research, 18(1), 129–135. (PMID: 1925017910.1111/j.1365-2869.2008.00704.x)
Qiu, M., Vetrivelan, R., Fuller, P. M., & Lu, J. (2010). Basal ganglia control of sleep–wake behavior and cortical activation. European Journal of Neuroscience, 31(3), 499–507. (PMID: 10.1111/j.1460-9568.2009.07062.x)
Riemann, D., Nissen, C., Palagini, L., Otte, A., Perlis, M. L., & Spiegelhalder, K. (2015). The neurobiology, investigation, and treatment of chronic insomnia. Lancet Neurology, 14(5), 547–558. (PMID: 2589593310.1016/S1474-4422(15)00021-6)
Rivera, A., Alberti, I., Martin, A. B., Narvaez, J. A., La Calle, A. D., & Moratalla, R. (2002). Molecular phenotype of rat striatal neurons expressing the dopamine D5 receptor subtype. European Journal of Neuroscience, 16(11), 2049–2058. (PMID: 10.1046/j.1460-9568.2002.02280.x)
Sarkadi, A., Anh, D. T. T., Nagy, A., & Tomka, I. (1974). Activity of the corpus striatum of cats during natural sleep; a correlation analysis study. Acta Physiologica Hungarica, 45(3–4), 233–242. (PMID: 4471269)
Sayers, A., & Stille, G. (1972). The caudate spindle during various sleep stages. Experientia, 28(3), 282–284. (PMID: 502643210.1007/BF01928690)
Shao, Z., Xu, Y., Chen, L., Wang, S., Zhang, M., Liu, S., ... Yuan, K. (2020). Dysfunction of the NAc-mPFC circuit in insomnia disorder. NeuroImage: Clinical, 28. https://doi.org/10.1016/j.nicl.2020.102474 .
Song, K., Li, J., Zhu, Y., Ren, F., Cao, L., Shao, Y., & Huang, Z.-G. (2020). Altered small-world functional network topology in patients with optic neuritis: A resting- state fMRI study. bioRxiv, 2020.2006.2009.141432. https://doi.org/10.1101/2020.06.09.141432 .
Spiegelhalder, K., Regen, W., Prem, M., Baglioni, C., Nissen, C., Feige, B.,.. . Riemann, D. (2014). Reduced anterior internal capsule white matter integrity in primary insomnia. Human Brain Mapping, 35(7), 3431–3438. (PMID: 2505042910.1002/hbm.22412)
Tej, B., Berg, H. J., Jbabdi, S., Mfs, R., & Woolrich, M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage, 34(1), 144–155. (PMID: 10.1016/j.neuroimage.2006.09.018)
Tziortzi, A. C., Haber, S. N., Searle, G. E., Tsoumpas, C., Long, C. J., Shotbolt, P., & Rabiner, E. A. (2014). Connectivity-based functional analysis of dopamine release in the striatum using diffusion-weighted MRI and positron emission tomography. Cerebral Cortex, 24(5), 1165–1177. (PMID: 2328368710.1093/cercor/bhs397)
Van Dongen, H. P. A., Maislin, G., Mullington, J., & Dinges, D. F. (2003). The cumulative cost of additional wakefulness: Dose-response effects on neurobehavioral functions and sleep physiology from Chronic sleep restriction and total sleep deprivation. Sleep, 26(2), 117–126. (PMID: 1268346910.1093/sleep/26.2.117)
Vetrivelan, R., Qiu, M., Chang, C., & Lu, J. (2010). Role of basal ganglia in sleep-wake regulation: neural circuitry and clinical significance. Frontiers in Neuroanatomy, 4, 145–145. (PMID: 21151379299625610.3389/fnana.2010.00145)
Volkow, N. D., Tomasi, D., Wang, G., Telang, F., Fowler, J. S., Logan, J., & Ferre, S. (2012). Evidence That sleep deprivation downregulates dopamine D2R in ventral striatum in the human brain. The Journal of Neuroscience, 32(19), 6711–6717. (PMID: 22573693343328510.1523/JNEUROSCI.0045-12.2012)
Wadhwa, M., Prabhakar, A., Ray, K., Roy, K., Kumari, P., Jha, P. K.,.. . Panjwani, U. (2017). Inhibiting the microglia activation improves the spatial memory and adult neurogenesis in rat hippocampus during 48 h of sleep deprivation. Journal of Neuroinflammation, 14(1), 222. (PMID: 29141671568867010.1186/s12974-017-0998-z)
Wang, T., Li, S., Jiang, G., Lin, C., Li, M., Ma, X.,.. . Li, C. (2016). Regional homogeneity changes in patients with primary insomnia. European Radiology, 26(5), 1292–1300. (PMID: 2635053910.1007/s00330-015-3960-4)
Wang, T., Yan, J., Li, S., Zhan, W., Ma, X., Xia, L., & Jiang, G. (2017). Increased insular connectivity with emotional regions in primary insomnia patients: a resting-state fMRI study. European Radiology, 27(9), 3703–3709. https://doi.org/10.1007/s00330-016-4680-0 . (PMID: 10.1007/s00330-016-4680-028144739)
Winkelman, J. W., Plante, D. T., Laura, S., Kathleen, B., Buxton, O. M., O’Connor, S. P., & Atilla, G. (2013). Increased rostral anterior cingulate cortex volume in chronic primary insomnia. Sleep, 36(7), 991–998. (PMID: 23814335366907010.5665/sleep.2794)
Wouter, V. D. B., Rodriguez, C. A., Schweitzer, J. B., & Mcclure, S. M. (2015). Adolescent impatience decreases with increased frontostriatal connectivity. Proceedings of the National Academy of Sciences of the United States of America, 112(29), 3765–3774. (PMID: 10.1073/pnas.1423095112)
Wu, Y., Liu, M., Zeng, S., Ma, X., Yan, J., Lin, C., ... Fu, S. (2018). Abnormal topology of the structural connectome in the limbic cortico-basal-ganglia circuit and default-mode network among primary insomnia patients. Frontiers in Neuroscience, 12, 860.
Yan, C. Q., Liu, C. Z., Wang, X., Huo, J. W., Zhou, P., Zhang, S., & Liu, Q. Q. (2018). Abnormal functional connectivity of anterior cingulate cortex in patients with primary insomnia: a resting-state functional magnetic resonance imaging study. Frontiers in Aging Neuroence, 10, 167. (PMID: 10.3389/fnagi.2018.00167)
Yeon, J. E., Hosung, K., Sooyeon, S., & Hong, S. B. (2014). Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: magnetic resonance imaging morphometry. Sleep, 37(7), 1189–1198. (PMID: 10.5665/sleep.3836)
Yuan, K., Qin, W., Yu, D., Bi, Y., Xing, L., Jin, C., & Tian, J. (2016). Core brain networks interactions and cognitive control in internet gaming disorder individuals in late adolescence/early adulthood. Brain Structure & Function, 221(3), 1427–1442. (PMID: 10.1007/s00429-014-0982-7)
Yuan, K., Yu, D., Bi, Y., Wang, R., Li, M., Zhang, Y.,.. . Lu, X. (2017). The left dorsolateral prefrontal cortex and caudate pathway: New evidence for cue-induced craving of smokers. Human Brain Mapping, 38(9), 4644–4656. (PMID: 28653791686673010.1002/hbm.23690)
Yuan, K., Yu, D., Zhao, M., Li, M., Wang, R., Li, Y.,.. . Wang, G. (2018a). Abnormal frontostriatal tracts in young male tobacco smokers. NeuroImage, 183, 346–355. (PMID: 3013064410.1016/j.neuroimage.2018.08.046)
Yuan, K., Zhao, M., Yu, D., Manza, P., Volkow, N. D., Wang, G., & Tian, J. (2018). Striato-cortical tracts predict 12-h abstinence-induced lapse in smokers. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 43(12), 2452–2458. (PMID: 10.1038/s41386-018-0182-x)
Grant Information: 81871426,81871430 National Natural Science Foundation of China; 2019JQ07 Natural Science Foundation of Inner Mongolia
Contributed Indexing: Keywords: DTI probabilistic tractography; Primary insomnia; Striatum‐centered circuits; Structural connectivity
Entry Date(s): Date Created: 20210302 Date Completed: 20211012 Latest Revision: 20211012
Update Code: 20240513
DOI: 10.1007/s11682-021-00454-3
PMID: 33651331
ISSN: 1931-7565
DOI: 10.1007/s11682-021-00454-3
Database: MEDLINE