Academic Journal

The cross-talk between leptin and circadian rhythm signaling proteins in physiological processes: a systematic review.

Bibliographic Details
Title: The cross-talk between leptin and circadian rhythm signaling proteins in physiological processes: a systematic review.
Authors: Ansarin A; Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran., Mahdavi AM; Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran.; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran., Javadivala Z; Department of Health Education & Promotion, Tabriz University of Medical Sciences, Tabriz, Iran., Shanehbandi D; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran., Zarredar H; Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran., Ansarin K; Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran. ansarink@tbzmed.ac.ir.
Source: Molecular biology reports [Mol Biol Rep] 2023 Dec; Vol. 50 (12), pp. 10427-10443. Date of Electronic Publication: 2023 Oct 24.
Abstract: Background: Today, modern lifestyles and disrupted sleep patterns cause circadian clock rhythm impairments that are associated with altered leptin levels, which subsequently affect a wide range of physiological processes and have significant health burdens on societies. Nevertheless, there has been no systematic review of circadian clock genes and proteins, leptin, and related signaling pathways.
Methods: Accordingly, we systematically reviewed circadian clock proteins, leptin, and molecular mechanisms between them by searching Pubmed, Scopus, ProQuest, Web of Sciences, and Google Scholar until September 2022. After considering the inclusion and exclusion criteria, 20 animal studies were selected. The risk of bias was assessed in each study.
Results: The results clarified the reciprocal interconnected relationship between circadian clock genes and leptin. Circadian clock genes regulate leptin expression and signaling via different mechanisms, such as CLOCK-BMAL1 heterodimers, which increase the expression of PPARs. PPARs induce the expression of C/EBPα, a key factor in upregulating leptin expression. CLOCK-BMAL1 also induces the expression of Per1 and Rev-erb genes. PER1 activates mTORC1 and mTORC1 enhances the expression of C/EBPα. In addition, REV-ERBs activate the leptin signaling pathway. Also, leptin controls the expression of circadian clock genes by triggering the AMPK and ERK/MAPK signaling pathways, which regulate the activity of PPARs. Moreover, the roles of these molecular mechanisms are elucidated in different physiological processes and organs.
Conclusions: Crosstalk between circadian clock genes and leptin and their affecting elements should be considered in the selection of new therapeutic targets for related disorders, especially obesity and metabolic impairments.
(© 2023. The Author(s), under exclusive licence to Springer Nature B.V.)
Publication Type: Systematic Review; Journal Article; Review
Language: English
Journal Info: Publisher: Reidel Country of Publication: Netherlands NLM ID: 0403234 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-4978 (Electronic) Linking ISSN: 03014851 NLM ISO Abbreviation: Mol Biol Rep Subsets: MEDLINE
Imprint Name(s): Original Publication: Dordrecht, Boston, Reidel.
MeSH Terms: Circadian Clocks*/genetics , Circadian Rhythm Signaling Peptides and Proteins*, Animals ; ARNTL Transcription Factors ; Circadian Rhythm/genetics ; Leptin/genetics ; Mechanistic Target of Rapamycin Complex 1 ; Nuclear Receptor Subfamily 1, Group D, Member 1/genetics ; Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism ; Peroxisome Proliferator-Activated Receptors ; Humans
References: Ando H et al (2011) Impairment of peripheral circadian clocks precedes metabolic abnormalities in ob/ob mice. Endocrinology 152(4):1347–1354. (PMID: 2128531610.1210/en.2010-1068)
Yamamoto T et al (2004) Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol 5(1):1–9. (PMID: 10.1186/1471-2199-5-18)
Guan D, Lazar MA (2021) Interconnections between circadian clocks and metabolism. J Clin Investig 131(15):e148278. (PMID: 34338232832157810.1172/JCI148278)
Husse J et al (2012) Circadian clock genes Per1 and Per2 regulate the response of metabolism-associated transcripts to sleep disruption. PLoS ONE 7(12):e52983. (PMID: 23285241353243210.1371/journal.pone.0052983)
Hemmeryckx B, Hoylaerts MF, Lijnen HR (2012) Effect of premature aging on murine adipose tissue. Exp Gerontol 47(3):256–262. (PMID: 2226580110.1016/j.exger.2012.01.001)
Sato S et al (2022) Tuning up an aged clock: circadian clock regulation in metabolism and aging. Transl Med Aging 6:1–13. (PMID: 10.1016/j.tma.2021.11.003)
Zieba DA, Biernat W, Barć J (2020) Roles of leptin and resistin in metabolism, reproduction, and leptin resistance. Domest Anim Endocrinol 73:106472. (PMID: 3226508110.1016/j.domaniend.2020.106472)
Chu G et al (2019) Leptin receptor mediates bmal1 regulation of estrogen synthesis in granulosa cells. Animals 9(11):899. (PMID: 31683864691281510.3390/ani9110899)
Hsuchou H et al (2013) Diminished leptin signaling can alter circadian rhythm of metabolic activity and feeding. J Appl Physiol 115(7):995–1003. (PMID: 23869060379882010.1152/japplphysiol.00630.2013)
Li Y et al (2020) Circadian rhythms and obesity: timekeeping governs lipid metabolism. J Pineal Res 69(3):e12682. (PMID: 3265690710.1111/jpi.12682)
Lalazar G (2015) Leptin rocks around the circadian CLOCK. Sci Transtl Med 7(298):298ec131-298ec131.
Dibner C, Gachon F (2015) Circadian dysfunction and obesity: is leptin the missing link? Cell Metab 22(3):359–360. (PMID: 26331601465715310.1016/j.cmet.2015.08.008)
Chellappa K et al (2019) The leptin sensitizer celastrol reduces age-associated obesity and modulates behavioral rhythms. Aging Cell 18(3):e12874. (PMID: 30821426651617610.1111/acel.12874)
Cleal JK et al (2019) Maternal obesity during pregnancy alters daily activity and feeding cycles, and hypothalamic clock gene expression in adult male mouse offspring. Int J Mol Sci 20(21):5408. (PMID: 31671625686267910.3390/ijms20215408)
Crew RC, Mark PJ, Waddell BJ (2018) Obesity disrupts rhythmic clock gene expression in maternal adipose tissue during rat pregnancy. J Biol Rhythms 33(3):289–301. (PMID: 2976175010.1177/0748730418772499)
Gulcelik N et al (2013) Adipocytokines and aging: adiponectin and leptin. Minerva Endocrinol 38(2):203–210. (PMID: 23732375)
Khapre RV et al (2014) BMAL1-dependent regulation of the mTOR signaling pathway delays aging. Aging (Albany NY) 6(1):48. (PMID: 2448131410.18632/aging.100633)
Philbrick KA et al (2017) Leptin stimulates bone formation in ob/ob mice at doses having minimal impact on energy metabolism. J Endocrinol 232(3):461. (PMID: 28057869528812510.1530/JOE-16-0484)
Turner RT et al (2013) Peripheral leptin regulates bone formation. J Bone Miner Res 28(1):22–34. (PMID: 2288775810.1002/jbmr.1734)
Adlanmerini M et al (2021) Hypothalamic REV-ERB nuclear receptors control diurnal food intake and leptin sensitivity in diet-induced obese mice. J Clin Invest 131:1. (PMID: 10.1172/JCI140424)
Fu L et al (2005) The molecular clock mediates leptin-regulated bone formation. Cell 122(5):803–815. (PMID: 1614310910.1016/j.cell.2005.06.028)
Jouffe C et al (2022) Disruption of the circadian clock component BMAL1 elicits an endocrine adaption impacting on insulin sensitivity and liver disease. Proc Natl Acad Sci USA 119(10):e2200083119. (PMID: 35238641891600410.1073/pnas.2200083119)
Kaneko K et al (2009) Obesity alters circadian expressions of molecular clock genes in the brainstem. Brain Res 1263:58–68. (PMID: 1940118410.1016/j.brainres.2008.12.071)
Kennaway DJ et al (2012) Adipokines and adipocyte function in clock mutant mice that retain melatonin rhythmicity. Obesity 20(2):295–305. (PMID: 2191857810.1038/oby.2011.276)
Kennaway DJ et al (2013) Global loss of bmal1 expression alters adipose tissue hormones, gene expression and glucose metabolism. PLoS ONE 8(6):e65255. (PMID: 23750248367214510.1371/journal.pone.0065255)
Kettner NM et al (2015) Circadian dysfunction induces leptin resistance in mice. Cell Metab 22(3):448–459. (PMID: 26166747455834110.1016/j.cmet.2015.06.005)
Meyer-Kovac J et al (2017) Hepatic gene therapy rescues high-fat diet responses in circadian Clock mutant mice. Mol Metab 6(6):512–523. (PMID: 28580282544407510.1016/j.molmet.2017.03.008)
Saiz N et al (2022) REV-ERBα agonist SR9009 promotes a negative energy balance in goldfish. Int J Mol Sci 23:6. (PMID: 10.3390/ijms23062921)
So AY et al (2009) Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proc Natl Acad Sci USA 106(41):17582–17587. (PMID: 19805059275740210.1073/pnas.0909733106)
Turek FW et al (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308(5724):1043–1045. (PMID: 15845877376450110.1126/science.1108750)
Varcoe TJ et al (2016) The impact of prenatal circadian rhythm disruption on pregnancy outcomes and long-term metabolic health of mice progeny. Chronobiol Int 33(9):1171–1181. (PMID: 2746355910.1080/07420528.2016.1207661)
Vieira E et al (2012) The clock gene Rev-erbα regulates pancreatic β-cell function: modulation by leptin and high-fat diet. Endocrinology 153(2):592–601. (PMID: 2216697910.1210/en.2011-1595)
Wei Y et al (2021) Restoration of H3k27me3 modification epigenetically silences Cry1 expression and sensitizes leptin signaling to reduce obesity-related properties. Adv Sci (Weinh) 8(14):2004319. (PMID: 3430697210.1002/advs.202004319)
Xie X et al (2013) Influence of the core circadian gene “Clock” on obesity and leptin resistance in mice. Brain Res 1491:147–155. (PMID: 2315971610.1016/j.brainres.2012.11.007)
Yang S et al (2009) The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology 150(5):2153–2160. (PMID: 19179447267190110.1210/en.2008-0705)
Mahdavi AM, Javadivala Z (2021) Systematic review of the effects of pomegranate (Punica granatum) on osteoarthritis. Health Promot Perspect 11(4):411. (PMID: 10.34172/hpp.2021.51)
Hooijmans CR et al (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14:1–9. (PMID: 10.1186/1471-2288-14-43)
Dettori J (2010) The random allocation process: two things you need to know. Evid Based Spine-Care J 1(03):7–9. (PMID: 22956922342796110.1055/s-0030-1267062)
Hirst JA et al (2014) The need for randomization in animal trials: an overview of systematic reviews. PLoS ONE 9(6):e98856. (PMID: 24906117404821610.1371/journal.pone.0098856)
Bell BB et al (2018) Differential contribution of POMC and AgRP neurons to the regulation of regional autonomic nerve activity by leptin. Mol Metab 8:1–12. (PMID: 2928964610.1016/j.molmet.2017.12.006)
Jiang L et al (2020) Leptin receptor-expressing neuron Sh2b1 supports sympathetic nervous system and protects against obesity and metabolic disease. Nat Commun 11(1):1–13. (PMID: 10.1038/s41467-020-19240-8)
Yu L et al (2018) Leptin injection into the left stellate ganglion augments ischemia-related ventricular arrhythmias via sympathetic nerve activation. Heart Rhythm 15(4):597–606. (PMID: 2922951910.1016/j.hrthm.2017.12.003)
Zhou Y, Rui L (2013) Leptin signaling and leptin resistance. Front Med 7:207–222. (PMID: 23580174406906610.1007/s11684-013-0263-5)
Kohsaka A, Bass J (2007) A sense of time: how molecular clocks organize metabolism. Trends Endocrinol Metab 18(1):4–11. (PMID: 1714080510.1016/j.tem.2006.11.005)
García-Niño WR, Zazueta C (2021) New insights of Krüppel-like transcription factors in adipogenesis and the role of their regulatory neighbors. Life Sci 265:118763. (PMID: 3318981910.1016/j.lfs.2020.118763)
Chen L, Yang G (2014) PPARs integrate the mammalian clock and energy metabolism. PPAR Res 2014:1.
Patel SA, Velingkaar NS, Kondratov RV (2014) Transcriptional control of antioxidant defense by the circadian clock. Antioxid Redox Signal 20(18):2997–3006. (PMID: 24111970403898510.1089/ars.2013.5671)
Charoensuksai P, Xu W (2010) PPARs in rhythmic metabolic regulation and implications in health and disease. PPAR Res 2010:1. (PMID: 10.1155/2010/243643)
Rey G et al (2011) Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol 9(2):e1000595. (PMID: 21364973304300010.1371/journal.pbio.1000595)
Canaple L et al (2006) Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor α defines a novel positive feedback loop in the rodent liver circadian clock. Mol Endocrinol 20(8):1715–1727. (PMID: 1655673510.1210/me.2006-0052)
Wang N et al (2008) Vascular PPARγ controls circadian variation in blood pressure and heart rate through Bmal1. Cell Metab 8(6):482–491. (PMID: 19041764548454010.1016/j.cmet.2008.10.009)
Grimaldi B et al (2010) PER2 controls lipid metabolism by direct regulation of PPARγ. Cell Metab 12(5):509–520. (PMID: 21035761410316810.1016/j.cmet.2010.10.005)
Ahmadian M et al (2013) PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 19(5):557–566. (PMID: 2365211610.1038/nm.3159)
Evans MC, Lord RA, Anderson GM (2021) Multiple leptin signalling pathways in the control of metabolism and fertility: a means to different ends? Int J Mol Sci 22(17):9210. (PMID: 34502119843076110.3390/ijms22179210)
Duszka K, Wahli W (2020) Peroxisome proliferator-activated receptors as molecular links between caloric restriction and circadian rhythm. Nutrients 12(11):3476. (PMID: 33198317769607310.3390/nu12113476)
Lau-Corona D, Suvorov A, Waxman DJ (2017) Feminization of male mouse liver by persistent growth hormone stimulation: activation of sex-biased transcriptional networks and dynamic changes in chromatin states. Mol Cell Biol 37(19):e00301-e317. (PMID: 28694329559972310.1128/MCB.00301-17)
Cao R et al (2011) Circadian regulation of mammalian target of rapamycin signaling in the mouse suprachiasmatic nucleus. Neuroscience 181:79–88. (PMID: 2138245310.1016/j.neuroscience.2011.03.005)
Michael AK, Asimgil H, Partch CL (2015) Cytosolic BMAL1 moonlights as a translation factor. Trends Biochem Sci 40(9):489–490. (PMID: 26256246457865210.1016/j.tibs.2015.07.006)
Bruder-Nascimento T et al (2019) Leptin restores endothelial function via endothelial PPARγ-Nox1–mediated mechanisms in a mouse model of congenital generalized lipodystrophy. Hypertension 74(6):1399–1408. (PMID: 3165609610.1161/HYPERTENSIONAHA.119.13398)
Suzuki A et al (2007) Leptin stimulates fatty acid oxidation and peroxisome proliferator-activated receptor α gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the α2 form of AMP-activated protein kinase. Mol Cell Biol 27(12):4317–4327. (PMID: 17420279190006410.1128/MCB.02222-06)
Casado ME et al (2023) Recent advances in the knowledge of the mechanisms of leptin physiology and actions in neurological and metabolic pathologies. Int J Mol Sci 24(2):1422. (PMID: 36674935986094310.3390/ijms24021422)
Moreno M et al (2010) PPARs: nuclear receptors controlled by, and controlling, nutrient handling through nuclear and cytosolic signaling. PPAR Res 2010:1. (PMID: 10.1155/2010/435689)
Ge T et al (2018) Leptin in depression: a potential therapeutic target. Cell Death Dis 9(11):1096. (PMID: 30367065620375810.1038/s41419-018-1129-1)
Lamming DW (2014) Diminished mTOR signaling: a common mode of action for endocrine longevity factors. Springerplus 3(1):1–11. (PMID: 10.1186/2193-1801-3-735)
Maya-Monteiro C, Bozza P (2008) Leptin and mTOR: partners in metabolism and inflammation. Cell Cycle 7(12):1713–1717. (PMID: 1858393610.4161/cc.7.12.6157)
Procaccini C et al (2013) Role of adipokines signaling in the modulation of T cells function. Front Immunol 4:332. (PMID: 24151494379920510.3389/fimmu.2013.00332)
Lamia KA et al (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326(5951):437–440. (PMID: 19833968281910610.1126/science.1172156)
Wharfe MD et al (2016) Pregnancy-induced adaptations of the central circadian clock and maternal glucocorticoids. J Endocrinol 228(3):135–147. (PMID: 2688320710.1530/JOE-15-0405)
Wharfe MD et al (2016) Pregnancy-induced changes in the circadian expression of hepatic clock genes: implications for maternal glucose homeostasis. Am J Physiol Endocrinol Metab 311(3):E575–E586. (PMID: 2740673910.1152/ajpendo.00060.2016)
Wharfe MD et al (2016) Pregnancy suppresses the daily rhythmicity of core body temperature and adipose metabolic gene expression in the mouse. Endocrinology 157(9):3320–3331. (PMID: 2740964410.1210/en.2016-1177)
Varcoe TJ et al (2013) Characterisation of the maternal response to chronic phase shifts during gestation in the rat: implications for fetal metabolic programming. PLoS ONE 8(1):e53800. (PMID: 23342007354475910.1371/journal.pone.0053800)
Varcoe TJ et al (2011) Chronic phase shifts of the photoperiod throughout pregnancy programs glucose intolerance and insulin resistance in the rat. PLoS ONE 6(4):e18504. (PMID: 21494686307182910.1371/journal.pone.0018504)
Dixit VD et al (2003) Leptin induces growth hormone secretion from peripheral blood mononuclear cells via a protein kinase C-and nitric oxide-dependent mechanism. Endocrinology 144(12):5595–5603. (PMID: 1297016410.1210/en.2003-0600)
Watanobe H, Habu S (2002) Leptin regulates growth hormone-releasing factor, somatostatin, and α-melanocyte-stimulating hormone but not neuropeptide Y release in rat hypothalamus in vivo: relation with growth hormone secretion. J Neurosci 22(14):6265–6271. (PMID: 12122085675792510.1523/JNEUROSCI.22-14-06265.2002)
Isidori AM et al (1999) Leptin and androgens in male obesity: evidence for leptin contribution to reduced androgen levels. J Clin Endocrinol Metab 84(10):3673–3680. (PMID: 10523013)
Rangel N, Villegas VE, Rondón-Lagos M (2021) Obesity and androgen receptor signaling: associations and potential crosstalk in breast cancer cells. Cancers 13(9):2218. (PMID: 34066328812535710.3390/cancers13092218)
Frank A, Brown LM, Clegg DJ (2014) The role of hypothalamic estrogen receptors in metabolic regulation. Front Neuroendocrinol 35(4):550–557. (PMID: 24882636417498910.1016/j.yfrne.2014.05.002)
Raut PK et al (2017) Estrogen receptor signaling mediates leptin-induced growth of breast cancer cells via autophagy induction. Oncotarget 8(65):109417. (PMID: 29312618575253110.18632/oncotarget.22684)
González-García I et al (2023) Estradiol regulates leptin sensitivity to control feeding via hypothalamic Cited1. Cell Metab 35(3):438–455. (PMID: 368892831002800710.1016/j.cmet.2023.02.004)
Lefebvre P, Staels B (2021) Hepatic sexual dimorphism—implications for non-alcoholic fatty liver disease. Nat Rev Endocrinol 17(11):662–670. (PMID: 3441758810.1038/s41574-021-00538-6)
Della Torre S, Maggi A (2017) Sex differences: a resultant of an evolutionary pressure? Cell Metab 25(3):499–505. (PMID: 2819077210.1016/j.cmet.2017.01.006)
Huang X et al (2022) Hepatic leptin signaling improves hyperglycemia by stimulating MAPK phosphatase-3 protein degradation via STAT3. Cell Mol Gastroenterol Hepatol 14(5):983–1001. (PMID: 35863745949003110.1016/j.jcmgh.2022.07.010)
Jiang Y et al (2022) Critical roles of the circadian transcription factor BMAL1 in reproductive endocrinology and fertility. Front Endocrinol 13:1.
Yang G et al (2016) Timing of expression of the core clock gene Bmal1 influences its effects on aging and survival. Sci Transl Med 8(324):324ra16-324ra16. (PMID: 26843191487000110.1126/scitranslmed.aad3305)
Cordero-Barreal A et al (2021) An update on the role of leptin in the immuno-metabolism of cartilage. Int J Mol Sci 22(5):2411. (PMID: 33673730795753610.3390/ijms22052411)
Laplante M, Sabatini DM (2009) An emerging role of mTOR in lipid biosynthesis. Curr Biol 19(22):R1046–R1052. (PMID: 19948145339025410.1016/j.cub.2009.09.058)
Timmermans S, Souffriau J, Libert C (2019) A general introduction to glucocorticoid biology. Front Immunol 10:1545. (PMID: 31333672662191910.3389/fimmu.2019.01545)
Jenwitheesuk A et al (2014) Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways. Int J Mol Sci 15(9):16848–16884. (PMID: 25247581420082710.3390/ijms150916848)
Suriagandhi V, Nachiappan V (2022) Protective effects of melatonin against obesity-induced by leptin resistance. Behav Brain Res 417:113598. (PMID: 3456360010.1016/j.bbr.2021.113598)
Contributed Indexing: Keywords: BMAL1; Circadian rhythm; Clock genes; Leptin; Metabolism; REV-ERBα
Substance Nomenclature: 0 (ARNTL Transcription Factors)
0 (Circadian Rhythm Signaling Peptides and Proteins)
0 (Leptin)
EC 2.7.11.1 (Mechanistic Target of Rapamycin Complex 1)
0 (Nuclear Receptor Subfamily 1, Group D, Member 1)
0 (Peroxisome Proliferator-Activated Receptors)
0 (LEP protein, human)
Entry Date(s): Date Created: 20231024 Date Completed: 20231130 Latest Revision: 20231220
Update Code: 20231220
DOI: 10.1007/s11033-023-08887-3
PMID: 37874505
ISSN: 1573-4978
DOI: 10.1007/s11033-023-08887-3
Database: MEDLINE