Academic Journal

Impact of climate change on the future distribution of three Ferulago species in Iran using the MaxEnt model.

Bibliographic Details
Title: Impact of climate change on the future distribution of three Ferulago species in Iran using the MaxEnt model.
Authors: Hosseini N; Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran., Mostafavi H; Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran., Sadeghi SMM; School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA.
Source: Integrated environmental assessment and management [Integr Environ Assess Manag] 2024 Jul; Vol. 20 (4), pp. 1046-1059. Date of Electronic Publication: 2024 Feb 09.
Abstract: The decline of habitats supporting medicinal plants is a consequence of climate change and human activities. In the Middle East, Ferulago angulata, Ferulago carduchorum, and Ferulago phialocarpa are widely recognized for their culinary, medicinal, and economic value. Therefore, this study models these Ferulago species in Iran using the MaxEnt model under two representative concentration pathways (RCP4.5 and RCP8.5) for 2050 and 2070. The objective was to identify the most important bioclimatic (n = 6), edaphic (n = 4), and topographic (n = 3) variables influencing their distribution and predict changes under various climate scenarios. Findings reveal slope percentage as the most significant variable for F. angulata and F. carduchorum, while solar radiation was the primary variable for F. phialocarpa. MaxEnt modeling demonstrated good to excellent performance, as indicated by all the area under the curve values exceeding 0.85. Projections suggest negative area changes for F. angulata and F. carduchorum (i.e., predictions under RCP4.5 for 2050 and 2070 indicate -34.0% and -37.8% for F. phialocarpa, and -0.3% and -6.2% for F. carduchorum; additionally, predictions under RCP 8.5 for 2050 and 2070 show -39.0% and -52.2% for F. phialocarpa, and -1.33% and -9.8% for F. carduchorum), while for F. phialocarpa, a potential habitat increase (i.e., predictions under RCP4.5 for 2050 and 2070 are 23.4% and 11.2%, and under RCP 8.5 for 2050 and 2070 are 64.4% and 42.1%) is anticipated. These insights guide adaptive management strategies, emphasizing conservation and sustainable use amid global climate change. Special attention should be paid to F. angulata and F. carduchorum due to anticipated habitat loss. Integr Environ Assess Manag 2024;20:1046-1059. © 2024 SETAC.
(© 2024 SETAC.)
Publication Type: Journal Article
Language: English
Journal Info: Publisher: Society of Environmental Toxicology and Chemistry (SETAC) Country of Publication: United States NLM ID: 101234521 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1551-3793 (Electronic) Linking ISSN: 15513777 NLM ISO Abbreviation: Integr Environ Assess Manag Subsets: MEDLINE
Imprint Name(s): Original Publication: Pensacola, FL : Society of Environmental Toxicology and Chemistry (SETAC), c2005-
MeSH Terms: Climate Change* , Ecosystem*, Iran ; Environmental Monitoring/methods ; Models, Theoretical
References: Abdi, E., & Deljouei, A. (2019). Seasonal and spatial variability of root reinforcement in three pioneer species of the Hyrcanian forest. Austrian Journal of Forest Science, 136(3), 175–198.
Abdi, E., Saleh, H. R., Majnonian, B., & Deljouei, A. (2019). Soil fixation and erosion control by Haloxylon persicum roots in arid lands, Iran. Journal of Arid Land, 11, 86–96.
Abolmaali, S. M. R., Tarkesh, M., & Bashari, H. (2018). MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecological Informatics, 43, 116–123.
Ahmadi, M., Hemami, M. R., Kaboli, M., & Shabani, F. (2023). MaxEnt brings comparable results when the input data are being completed; model parameterization of four species distribution models. Ecology and Evolution, 13(2), e9827.
Akhani, H., Djamali, M., Ghorbanalizadeh, A., & Ramezani, E. (2010). Plant biodiversity of Hyrcanian relict forests, N Iran: An overview of the flora, vegetation, palaeoecology and conservation. Pakistan Journal of Botany, 42(1), 231–258.
Al‐Qaddi, N., Vessella, F., Stephan, J., Al‐Eisawi, D., & Schirone, B. (2017). Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change. Regional Environmental Change, 17, 143–156.
Asgarian, A., & Soffianian, A. (2023). Past and potential future distribution of white mangroves in an arid estuarine environment: Integration of Maxent and CA‐Markov models. Marine Policy, 147, 105345.
Bashari, H., Tarkesh, M., & Besalatpour, A. A. (2021). Identifying the determinant habitat characteristics influencing the spatial distribution of Ferula ovina (Boiss.) in semiarid rangelands of Iran using machine learning methods. Ecological Complexity, 45, 100909.
Beridze, B., Sękiewicz, K., Walas, Ł., Thomas, P. A., Danelia, I., Fazaliyev, V., Kvartskhava, G., Sós, J., & Dering, M. (2023). Biodiversity protection against anthropogenic climate change: Conservation prioritization of Castanea sativa in the South Caucasus based on genetic and ecological metrics. Ecology and Evolution, 13(5), e10068.
Bradley, B. A., Wilcove, D. S., & Oppenheimer, M. (2010). Climate change increases risk of plant invasion in the Eastern United States. Biological Invasions, 12, 1855–1872.
Chatterjee, S., & Hadi, A. S. (2006). Simple linear re‐ gression. In W. A. Shewhart and S. S. Wilks (Eds.), Regression analysis by example (pp. 21–51). John Wiley and Sons.
Cuena‐Lombraña, A., Fois, M., Fenu, G., Cogoni, D., & Bacchetta, G. (2018). The impact of climatic variations on the reproductive success of Gentiana lutea L. in a Mediterranean mountain area. International Journal of Biometeorology, 62, 1283–1295.
Deljouei, A., Abdi, E., Marcantonio, M., Majnounian, B., Amici, V., & Sohrabi, H. (2017). The impact of forest roads on understory plant diversity in temperate hornbeam‐beech forests of Northern Iran. Environmental Monitoring and Assessment, 189, 1–15.
Deljouei, A., Cislaghi, A., Abdi, E., Borz, S. A., Majnounian, B., & Hales, T. C. (2023). Implications of hornbeam and beech root systems on slope stability: From field and laboratory measurements to modelling methods. Plant and Soil, 483(1–2), 547–572.
Deljouei, A., Sadeghi, S. M. M., Abdi, E., Bernhardt‐Römermann, M., Pascoe, E. L., & Marcantonio, M. (2018). The impact of road disturbance on vegetation and soil properties in a beech stand, Hyrcanian forest. European Journal of Forest Research, 137(6), 759–770.
Demetzos, C., Perdetzoglou, D., Gazouli, M., Tan, K., & Economakis, C. (2000). Chemical analysis and antimicrobial studies on three species of Ferulago from Greece. Planta Medica, 66(6), 560–563. https://doi.org/10.1055/s-2000-8652.
Douaihy, C. B., Restoux, G., Machon, N., & Dagher‐Kharrat, M. B. (2013). Ecological characterization of the Juniperus excelsa stands in Lebanon. Ecologia mediterranea, 39(1), 169–180.
Du, Z., He, Y., Wang, H., Wang, C., & Duan, Y. (2021). Potential geographical distribution and habitat shift of the genus Ammopiptanthus in China under current and future climate change based on the MaxEnt model. Journal of Arid Environments, 184, 104328.
Ebrahimian, V., Bagheri, R., Mohseni, M., & Poormirzaei, A. (2013). Ecological and phenological study on Ferulago angulata in the Hezar Mountains and Bondar Henza, Kerman, Iran. Rangelands, 4, 285–297.
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57.
Farahnak, M., Mitsuyasu, K., Jeong, S., Otsuki, K., Chiwa, M., Sadeghi, S. M. M., & Kume, A. (2019). Soil hydraulic conductivity differences between upslope and downslope of two coniferous trees on a hillslope. Journal of Forest Research, 24(3), 143–152.
Fois, M., Bacchetta, G., Cogoni, D., & Fenu, G. (2018). Current and future effectiveness of the Natura 2000 network for protecting plant species in Sardinia: A nice and complex strategy in its raw state? Journal of Environmental Planning and Management, 61(2), 332–347.
Hama, A. A., & Khwarahm, N. R. (2023). Predictive mapping of two endemic oak tree species under climate change scenarios in a semiarid region: Range overlap and implications for conservation. Ecological Informatics, 73, 101930.
Hijmans, R. J., Phillips, S., Leathwick, J., Elith, J., & Hijmans, M. R. J. (2017). Package ‘dismo.’. Circles, 9(1), 1–68.
Jahantab, E., Sepehri, A., Mirdeylami, S. Z., Ghasemi Aryian, Y., & Nori, S. (2011). Research on the ecology of the medicinal plant Ferulago angulata (Schlecht) Boiss in central Zagros (Kohgiluyeh region). Journal of Iranian Plant Ecophysiological Research, 24(4), 1–8.
Jahantab, E., Sepehri, A., Mirdilmi, S. Z., Ghasemi Arian, Y., & Nouri, S. (2011). Study of athecology of Ferulago angulata (Schlecht) Boiss in Central Zagros (Kohgiluyeh region). Journal of Plant Science Research, 24(4), 1–8.
Jamshidi, Z., & Samani, N. (2022). Mapping the spatiotemporal diversity of precipitation in Iran using multiple statistical methods. Theoretical and Applied Climatology, 150(1–2), 893–907.
Kaky, E., Nolan, V., Alatawi, A., & Gilbert, F. (2020). A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecological Informatics, 60, 101150.
Karimi, Z., Abdi, E., Deljouei, A., Cislaghi, A., Shirvany, A., Schwarz, M., & Hales, T. C. (2022). Vegetation‐induced soil stabilization in coastal area: An example from a natural mangrove forest. Catena, 216, 106410.
Keybondori, S., Abdi, E., Deljouei, A., Lázaro‐Lobo, A., Ervin, G. N., Shakeri, Z., Etemad, V., & Borz, S. A. (2023). Effect of forest roadside on vegetation characteristics in the Hyrcanian temperate forest. European Journal of Forest Research, 142(2), 455–473.
Koch, R., Almeida‐Cortez, J. S., & Kleinschmit, B. (2017). Revealing areas of high nature conservation importance in a seasonally dry tropical forest in Brazil: Combination of modelled plant diversity hot spots and threat patterns. Journal for Nature Conservation, 35, 24–39.
Kong, F., Tang, L., He, H., Yang, F., Tao, J., & Wang, W. (2021). Assessing the impact of climate change on the distribution of Osmanthus fragrans using Maxent. Environmental Science and Pollution Research, 28(26), 34655–34663. https://doi.org/10.1007/s11356-021-13121-3.
Lapola, D. M., Oyama, M. D., & Nobre, C. A. (2009). Exploring the range of climate biome projections for tropical South America: The role of CO2 fertilization and seasonality. Global Biogeochemical Cycles, 23(3), 1–16.
Li, G. Q., Liu, C. C., Liu, Y. G., Yang, J., Zhang, X. S., & Guo, K. (2013). Advances in theoretical issues of species distribution models. Acta Ecologica Sinica, 33, 4827–4835.
Lobo, J. M., Jiménez‐Valverde, A., & Real, R. (2008). AUC: A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 145–151.
Makki, T., Mostafavi, H., Matkan, A. A., Valavi, R., Hughes, R. M., Shadloo, S., Aghighi, H., Abdoli, A., Teimori, A., Eagderi, S., & Coad, B. W. (2023). Predicting climate heating impacts on riverine fish species diversity in a biodiversity hotspot region. Scientific Reports, 13, 14347. https://doi.org/10.1038/s41598-023-41406-9.
Malanson, G. P., & Alftine, K. J. (2023). Ecological impacts of climate change. In R. Sivanpillai (Eds.), Biological and environmental hazards, risks, and disasters (pp. 449–479). Elsevier.
Maruthadurai, R., Das, B., & Ramesh, R. (2023). Predicting the invasion risk of rugose spiraling whitefly, Aleurodicus rugioperculatus, in India based on CMIP6 projections by MaxEnt. Pest Management Science, 79(1), 295–305.
Mehraban, B., Safaei, K., & Chalabi, M. (2023). An overview of Kermanshahi oil as a functional food. Journal of Food Biosciences and Technology, 13(2), 39–45.
Mirinejad, S., Jahantab, E., Mahmoudi, M. R., Navaei, M. N., Rahimi, M. M., & Sharafatmandrad, M. (2018). Investigating the impact of some habitat characteristics on distribution of Stachys pilifera benth using the BMLR model in Iran. Polish Journal of Environmental Studies, 27(5), 2171–2178. https://doi.org/10.15244/pjoes/79719.
Momeni Damaneh, J., Ahmadi, J., Rahmanian, S., Sadeghi, S. M. M., Nasiri, V., & Borz, S. A. (2022). Prediction of wild pistachio ecological niche using machine learning models. Ecological Informatics, 72, 101907.
Mozafarian, V. (2007). Iranian flora (Iranian botany). In Apiaceae (Vol. III). Research Institute of Forests and Rangelands of Iran.
Naseri, H. R., Beigmohammadi, F., Mohammadi, R., & Sadeghi, E. (2020). Production and characterization of edible film based on gelatin–chitosan containing Ferulago angulate essential oil and its application in the prolongation of the shelf life of turkey meat. Journal of Food Processing and Preservation, 44(8), e14558.
Ngarega, B. K., Chaibva, P., Masocha, V. F., Saina, J. K., Khine, P. K., & Schneider, H. (2024). Application of MaxEnt modeling to evaluate the climate change effects on the geographic distribution of Lippia javanica (Burm. f.) Spreng in Africa. Environmental Monitoring and Assessment, 196(1), 62.
Nazari, M., Chaichi, M. R., Kamel, H., Grismer, M., & Sadeghi, S. M. M. (2020). Evaluation of estimation methods for monthly reference evapotranspiration in arid climates. Arid Ecosystems, 10, 329–336.
Nobakht, S. Z., Akaberi, M., Mohammadpour, A. H., Moghadam, A. T., & Emami, S. A. (2022). Hypericum perforatum: Traditional uses, clinical trials, and drug interactions. Iranian Journal of Basic Medical Sciences, 25(9), 1045.
Oke, O. A., & Thompson, K. A. (2015). Distribution models for mountain plant species: The value of elevation. Ecological Modelling, 301, 72–77.
Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102–117.
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259.
Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31(2), 161–175.
Qin, S., Yan, Y., & Ou, Y. (2020). Prediction of the potential distribution of Chimonanthus praecox in China based on MAXENT model and Arc GIS. Ecological Science, 39, 49–56.
Rahimpour, Y., Delazar, A., Asnaashari, S., & Asgharian, P. (2021). The genus Ferulago: A review on ethnopharmacology, phytochemistry, and pharmacology. Iranian Journal of Pharmaceutical Research: IJPR, 20(4), 352.
Robbins Schug, G., Buikstra, J. E., DeWitte, S. N., Baker, B. J., Berger, E., Buzon, M. R., Davies‐Barrett, A. M., Goldstein, L., Grauer, A. L., Gregoricka, L. A., & Halcrow, S. E. (2023). Climate change, human health, and resilience in the Holocene. Proceedings of the National Academy of Sciences of the United States of America, 120(4), e2209472120.
Rustaiyan, A., & Sedagat, S. (2002). Ferulago angulate (Schlecht) Boiss. From Iran. Journal of Essential Oil Research, 14(6), 447–448.
Salek Hashemi, S., Nasrollahnezhad Qomi, A., Naghdibadi, H., & Qaderi, A. (2014). Effect of cold stratification on seed germination and dormancy breaking in Ferulago angulata subsp carduchorum, an endangerd medicinal herb. The First national conference of medicinal plants and sustainable agriculture (pp. 1–12). Tehran, Iran.
Sanjerehei, M. M., & Rundel, P. W. (2017). The impact of climate change on habitat suitability for Artemisia sieberi and Artemisia aucheri (Asteraceae)—A modeling approach. Polish Journal of Ecology, 65, 97–109.
Santos, X., Brito, J. C., Sillero, N., Pleguezuelos, J. M., Llorente, G. A., Fahd, S., & Parellada, X. (2006). Inferring habitat‐suitability areas with ecological modelling techniques and GIS: A contribution to assess the conservation status of Vipera latastei. Biological Conservation, 130(3), 416–425.
Shi, X., Wang, J., Zhang, L., Chen, S., Zhao, A., Ning, X., Fan, G., Wu, N., Zhang, L., & Wang, Z. (2023). Prediction of the potentially suitable areas of Litsea cubeba in China based on future climate change using the optimized MaxEnt model. Ecological Indicators, 148, 110093.
Singh, B. K., Delgado‐Baquerizo, M., Egidi, E., Guirado, E., Leach, J. E., Liu, H., & Trivedi, P. (2023). Climate change impacts on plant pathogens, food security and paths forward. Nature Reviews Microbiology, 21, 640–656.
Sodefian, G., Ansari, K., Bamoniri, A., & Mirjalili, B. M. (2011). Study of chemical composition of Ferulago angulata (Schelchet) Boiss from Iran using supercritical fluid extraction and nano sale injection. Digest Journal of Nanomaterials and Biostructures, 6(1), 161–168.
Valavi, R., Shafizadeh‐Moghadam, H., Matkan, A. A., Shakiba, A., Mirbagheri, B., & Kia, S. H. (2019). Modelling climate change effects on Zagros forests in Iran using individual and ensemble forecasting approaches. Theoretical and Applied Climatology, 137(1–2), 1015–1025. https://doi.org/10.1007/s00704-018-2625-z.
Wardle, P., & Coleman, M. C. (2011). Evidence for rising upper limits of four native New Zealand forest trees. New Zealand Journal of Botany, 30, 303–314.
Wilson, P. D., Downey, P. O., Leishman, M., Gallagher, R., Hughes, L., & O'Donnell, J. (2009). Weeds in a warmer world: Predicting the impact of climate change on Australia's alien plant species using MaxEnt. Plant Protection Quarterly, 24(3), 84–87.
Wu, Y., Shen, X., Tong, L., Lei, F., Mu, X., & Zhang, Z. (2021). Impact of past and future climate change on the potential distribution of an endangered Montane Shrub Lonicera oblata and its conservation implications. Forests, 12, 125.
Yan, X., Wang, S., Duan, Y., Han, J., Huang, D., & Zhou, J. (2021). Current and future distribution of the deciduous shrub Hydrangea macrophylla in China estimated by MaxEnt. Ecology and Evolution, 11(22), 16099–16112.
Yi, Y., Cheng, X., Yang, Z. F., & Zhang, S. H. (2016). Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecological Engineering, 92, 260–269. https://doi.org/10.1016/j.ecoleng.2016.04.010.
Zhao, Q., Li, R., Gao, Y., Yao, Q., Guo, X., & Wang, W. (2018). Modeling impacts of climate change on the geographic distribution of medicinal plant Fritillaria cirrhosa D. Don. Plant Biosystems—An International Journal Dealing with all Aspects of Plant Biology, 152(3), 349–355.
Zhao, X., Lei, M., Wei, C., & Guo, X. (2022). Assessing the suitable regions and the key factors for three Cd‐accumulating plants (Sedum alfredii, Phytolacca americana, and Hylotelephium spectabile) in China using MaxEnt model. Science of the Total Environment, 852, 158202.
Zhou, W., Li, C., Zhao, W., Stringer, L. C., & Fu, B. (2024). Spatial distributions of soil nutrients affected by land use, topography and their interactions, in the Loess Plateau of China. International Soil and Water Conservation Research, 12(1), 227–239.
Contributed Indexing: Keywords: Climate change; Ferulago genus; Potential distribution; Species distribution model
Entry Date(s): Date Created: 20240209 Date Completed: 20240619 Latest Revision: 20240619
Update Code: 20240619
DOI: 10.1002/ieam.4898
PMID: 38334016
ISSN: 1551-3793
DOI: 10.1002/ieam.4898
Database: MEDLINE