Academic Journal

Dendritic Cells and the Establishment of Fetomaternal Tolerance for Successful Human Pregnancy.

Bibliographic Details
Title: Dendritic Cells and the Establishment of Fetomaternal Tolerance for Successful Human Pregnancy.
Authors: Mahajan D; Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India., Kumar T; Department of Veterinary Clinical Complex, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001, India., Rath PK; Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India., Sahoo AK; Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India.; Department of Veterinary Surgery and Radiology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India., Mishra BP; Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India.; Department of Livestock Products Technology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India., Kumar S; Proteomics and Structural Biology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India., Nayak NR; Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA., Jena MK; Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India.
Source: Archivum immunologiae et therapiae experimentalis [Arch Immunol Ther Exp (Warsz)] 2024 May 23; Vol. 72 (1). Date of Electronic Publication: 2024 May 23 (Print Publication: 2024).
Abstract: Pregnancy is a remarkable event where the semi-allogeneic fetus develops in the mother's uterus, despite genetic and immunological differences. The antigen handling and processing at the maternal-fetal interface during pregnancy appear to be crucial for the adaptation of the maternal immune system and for tolerance to the developing fetus and placenta. Maternal antigen-presenting cells (APCs), such as macrophages (Mφs) and dendritic cells (DCs), are present at the maternal-fetal interface throughout pregnancy and are believed to play a crucial role in this process. Despite numerous studies focusing on the significance of Mφs, there is limited knowledge regarding the contribution of DCs in fetomaternal tolerance during pregnancy, making it a relatively new and growing field of research. This review focuses on how the behavior of DCs at the maternal-fetal interface adapts to pregnancy's unique demands. Moreover, it discusses how DCs interact with other cells in the decidual leukocyte network to regulate uterine and placental homeostasis and the local maternal immune responses to the fetus. The review particularly examines the different cell lineages of DCs with specific surface markers, which have not been critically reviewed in previous publications. Additionally, it emphasizes the impact that even minor disruptions in DC functions can have on pregnancy-related complications and proposes further research into the potential therapeutic benefits of targeting DCs to manage these complications.
(© 2024 Deviyani Mahajan et al., published by Sciendo.)
Publication Type: Journal Article; Review
Language: English
Journal Info: Publisher: Sciendo Country of Publication: Poland NLM ID: 0114365 Publication Model: eCollection Cited Medium: Internet ISSN: 1661-4917 (Electronic) Linking ISSN: 0004069X NLM ISO Abbreviation: Arch Immunol Ther Exp (Warsz) Subsets: MEDLINE
Imprint Name(s): Publication: 2024- : Warsaw, Poland : Sciendo
Original Publication: Warszawa, Panstwowy Zakład Wydawn. Lekarskich.
MeSH Terms: Dendritic Cells*/immunology , Immune Tolerance* , Maternal-Fetal Exchange*/immunology , Placenta*/immunology, Humans ; Pregnancy ; Female ; Fetus/immunology ; Animals ; Macrophages/immunology ; Pregnancy Complications/immunology
References: Abomaray FM, Al Jumah MA, Kalionis B et al (2015) Human chorionic villous mesenchymal stem cells modify the functions of human dendritic cells, and induce an anti-inflammatory pheno-type in CD1+ dendritic cells. Stem Cell Rev Rep 11:423–441. https://doi.org/10.1007/s12015-014-9562-8.
Aldebert D, Diallo M, Niang M et al (2007) Differences in circulating dendritic cell subtypes in peripheral, placental and cord blood in African pregnant women. J Reprod Immunol 73:11–19. https://doi.org/10.1016/j.jri.2006.05.002.
Ali N, Zirak B, Rodriguez RS et al (2017) Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169:1119–1129. e11. https://doi.org/10.1016/j.cell.2017.05.002.
Allenspach EJ, Lemos MP, Porrett PM et al (2008) Migratory and lymphoid-resident dendritic cells cooperate to efficiently prime naive CD4 T cells. Immunity 29:795–806. https://doi.org/10.1016/j.immuni.2008.08.013.
Anandasabapathy N, Breton G, Hurley A et al (2015) Efficacy and safety of CDX-301, recombinant human Flt3L, at expanding dendritic cells and hematopoietic stem cells in healthy human volunteers. Bone Marrow Transplant 50:924–930. https://doi.org/10.1038/bmt.2015.74.
Anderson DA 3rd, Murphy KM, Briseno CG (2018) Development, diversity, and function of dendritic cells in mouse and human. Cold Spring Harb Perspect Biol 10:a028613. https://doi.org/10.1101/cshperspect.a028613.
Anderson DA, Dutertre CA, Ginhoux F et al (2021) Genetic models of human and mouse dendritic cell development and function. Nat Rev Immunol 21:101–115. https://doi.org/10.1038/s41577-020-00413-x.
Arpaia N, Green JA, Moltedo B et al (2015) A distinct function of regulatory T cells in tissue protection. Cell 162:1078–1089. https://doi.org/10.1016/j.cell.2015.08.021.
Askelund K, Liddell HS, Zanderigo AM et al (2004) CD83+ dendritic cells in the decidua of women with recurrent miscarriage and normal pregnancy. Placenta 25:140–145. https://doi.org/10.1016/s0143-4004(03)00182-6.
Bachy V, Williams DJ, Ibrahim MAA (2008) Altered dendritic cell function in normal pregnancy. J Reprod Immunol 78:11–21. https://doi.org/10.1016/j.jri.2007.09.004.
Bajana S, Turner S, Paul J et al (2016) IRF4 and IRF8 act in CD11c+ cells to regulate terminal differentiation of lung tissue dendritic cells. J Immunol 196:1666–1677. https://doi.org/10.4049/jimmunol.1501870.
Balan S, Saxena M, Bhardwaj N (2019) Dendritic cell subsets and locations. Int Rev Cell Mol Biol 348:1–68. https://doi.org/10.1016/bs.ircmb.2019.07.004.
Banchereau J, Briere F, Caux C et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811. https://doi.org/10.1146/annurev.immunol.18.1.767.
Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252. https://doi.org/10.1038/32588.
Barrientos G, Tirado-Gonzalez I, Klapp BF et al (2009) The impact of dendritic cells on angiogenic responses at the fetal–maternal interface. J Reprod Immunol 83:85–94. https://doi.org/10.1016/j.jri.2009.07.011.
Bartmann C, Segerer SE, Rieger L et al (2014) Quantification of the predominant immune cell populations in decidua throughout human pregnancy. Am J Reprod Immunol 71:109–119. https://doi.org/10.1111/aji.12185.
Benirschke K, Burton GJ, Baergen RN (2012) Pathology of the human placenta. Springer-Verlag, Berlin, Heidelberg.
Benschop RJ (1993) Beta 2-adrenergic stimulation causes detachment of natural killer cells from cultured endothelium. Eur J Immunol 23:3242–3247. https://doi.org/10.1002/eji.1830231230.
Bhardwaj N, Pavlick A, Ernstoff M et al (2016) A Phase II randomized study of CDX-1401, a dendritic cell targeting NY-ESO-1 vaccine, in patients with malignant melanoma pre-treated with recombinant CDX-301, a recombinant human Flt3 ligand. J Clin Oncol 34:9589–9589. http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.9589.
Bilbo SD, Dhabhar FS, Viswanathan K (2002) Short day lengths augment stress-induced leukocyte trafficking and stress-induced enhancement of skin immune function. Proc Natl Acad Sci U S A 99:4067–4072. https://doi.org/10.1073/pnas.062001899.
Bird L (2017) Plasmacytoid dendritic cells: Division of labour. Nat Rev Immunol 18:2–3. https://doi.org/10.1038/nri.2017.153.
Bizargity P, Del Rio R, Phillippe M et al (2009) Resistance to lipopolysaccharide-induced preterm delivery mediated by regulatory T cell function in mice. Biol Reprod 80:874–881. https://doi.org/10.1095/biolreprod.108.074294.
Blois S, Tometten M, Kandil J et al (2005) Intercellular adhesion molecule-1/LFA-1 cross talk is a proximate mediator capable of disrupting immune integration and tolerance mechanism at the feto-maternal interface in murine pregnancies. J Immunol 174:1820–1829. https://doi.org/10.4049/jimmunol.174.4.1820.
Blois SM, Alba Soto CD, Tometten M et al (2004) Lineage, maturity, and phenotype of uterine murine dendritic cells throughout gestation indicate a protective role in maintaining pregnancy. Biol Reprod 70:1018–1023. https://doi.org/10.1095/biolreprod.103.022640.
Blois SM, Kammerer U, Soto CA et al (2007) Dendritic cells: Key to fetal tolerance? Biol Reprod 77:590–598. https://doi.org/10.1095/biolreprod.107.060632.
Blois SM, Klapp BF, Barrientos G (2011) Decidualization and angio-genesis in early pregnancy: Unravelling the functions of DC and NK cells. J Reprod Immunol 88:86–92. https://doi.org/10.1016/j.jri.2010.11.002.
Boltjes A, Van Wijk F (2014) Human dendritic cell functional specialization in steady-state and inflammation. Front Immunol 5:131. https://doi.org/10.3389/fimmu.2014.00131.
Bonifaz L, Bonnyay D, Mahnke K et al (2002) Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 196:1627–1638. https://doi.org/10.1084/jem.20021598.
Bosch JA (2003) Acute stress evokes selective mobilization of T cells that differ in chemokine receptor expression: A potential pathway linking immunologic reactivity to cardiovascular disease. Brain Behav Immun 17:251–259. https://doi.org/10.1016/s0889-1591(03)00054-0.
Broggi A, Zanoni I, Granucci F (2013) Migratory conventional dendritic cells in the induction of peripheral T cell tolerance. J Leukoc Biol 94:903–911. https://doi.org/10.1189/jlb.0413222.
Burzyn D, Kuswanto W, Kolodin D et al (2013) A special population of regulatory T cells potentiates muscle repair. Cell 155:1282–1295. https://doi.org/10.1016/j.cell.2013.10.054.
Butts CL, Shukair SA, Duncan KM et al (2007) Progesterone inhibits mature rat dendritic cells in a receptor-mediated fashion. Int Immunol 19:287–296. https://doi.org/10.1093/intimm/dxl145.
Cabeza-Cabrerizo M, Cardoso A, Minutti CM (2021) Dendritic cells revisited. Annu Rev Immunol 39:131–166. https://doi.org/10.1146/annurev-immunol-061020-053707.
Cappelletti M, Della Bella S, Ferrazzi E et al (2016) Inflammation and preterm birth. J Leukoc Biol 99:67–78. https://doi.org/10.1189/jlb.3MR0615-272RR.
Carlson SL, Fox S, Abell KM (1997) Catecholaminemodulation of lymphocyte homing to lymphoid tissues. Brain Behav Immun 11:307–320. https://doi.org/10.1006/brbi.1997.0501.
Ceppi M, Pereira PM, Dunand-Sauthier I et al (2009) MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A 106: 2735–2740. https://doi.org/10.1073/pnas.0811073106.
Chang WL, Liu YW, Dang YL et al (2018) PLAC8, a new marker for human interstitial extravillous trophoblast cells, promotes their invasion and migration. Development 145:dev148932. https://doi.org/10.1242/dev.148932.
Chorny A, Gonzalez-Rey E, Delgado M (2006) Regulation of dendritic cell differentiation by vasoactive intestinal peptide: Therapeutic applications on autoimmunity and transplantation. Ann NY Acad Sci 1088:187–194. https://doi.org/10.1196/annals.1366.004.
Collin M, Bigley V (2018) Human dendritic cell subsets: An update. Immunology 154:3–20. https://doi.org/10.1111/imm.12888.
Collin M, Milne P (2016) Langerhans cell origin and regulation. Curr Opin Hematol 23:28–35. https://doi.org/10.1097%2FMOH.0000000000000202.
Collins MK, Tay CS, Erlebacher A (2009) Dendritic cell entrapment within the pregnant uterus inhibits immune surveillance of the maternal/fetal interface in mice. J Clin Invest 119:2062–2073. https://doi.org/10.1172/jci38714.
Coombes JL, Powrie F (2008) Dendritic cells in intestinal immune regulation. Nat Rev Immunol 8:435–446. https://doi.org/10.1038/nri2335.
Cordeau M, Herblot S, Charrier E et al (2012) Defects in CD54 and CD86 up-regulation by plasmacytoid dendritic cells during pregnancy. Immunol Invest 41:497–506. https://doi.org/10.3109/08820139.2012.682243.
Darmochwal-Kolarz D (2005) Pre-eclampsia: Immunological aspects-a role of adhesion molecules, cytokines, dendritic cells, MHC antigens and auto-antibodies. Curr Womens Health Rev 1:237–242. http://dx.doi.org/10.2174/157340405774575204.
Darmochwal-Kolarz D, Kludka-Sternik M, Kolarz B et al (2013) The expression of B7-H1 and B7-H4 co-stimulatory molecules on myeloid and plasmacytoid dendritic cells in pre-eclampsia and normal pregnancy. J Reprod Immunol 99:33–38. https://doi.org/10.1016/j.jri.2013.04.004.
Darmochwal-Kolarz D, Rolinski J, Tabarkiewicz J (2003) Myeloid and lymphoid dendritic cells in normal pregnancy and preeclampsia. Clin Exp Immunol 132:339–344. https://doi.org/10.1046%2Fj.1365-2249.2003.02136.x.
Darmochwal-Kolarz DA, Kludka-Sternik M, Chmielewski T et al (2012) The expressions of CD 200 and CD 200 R molecules on myeloid and lymphoid dendritic cells in pre-eclampsia and normal pregnancy. Am J Reprod Immunol 67:474–481. https://doi.org/10.1111/j.1600-0897.2012.01126.x.
Dauven D, Ehrentraut S, Langwisch S et al (2016) Immune modulatory effects of human chorionic gonadotropin on dendritic cells supporting fetal survival in murine pregnancy. Front Endocrinol 7:146. https://doi.org/10.3389/fendo.2016.00146.
de Jong MA, Geijtenbeek TB (2010) Langerhans cells in innate defense against pathogens. Trends Immunol 31:452–459. https://doi.org/10.1016/j.it.2010.08.002.
Della Bella S, Giannelli S, Cozzi V et al (2011) Incomplete activation of peripheral blood dendritic cells during healthy human pregnancy. Clin Exp Immunol 164:180–192. https://doi.org/10.1111/j.1365-2249.2011.04330.x.
Dhabhar FS (2008) Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection versus immunopathology. Allergy Asthma Clin Immunol 4:2–11. https://doi.org/10.1186/1710-1492-4-1-2.
Dhabhar FS, Miller AH, McEwen BS et al (1996) Stress-induced changes in blood leukocyte distribution-role of adrenal steroid hormones. J Immunol 157:1638–1644. https://doi.org/10.4049/jimmunol.157.4.1638.
Dietl J, Hönig A, Kämmerer U et al (2006) Natural killer cells and dendritic cells at the human feto-maternal interface: An effective cooperation? Placenta 27:341–347. https://doi.org/10.1016/j.placenta.2005.05.001.
Ding Y, Wilkinson A, Idris A et al (2014) FLT3-ligand treatment of humanized mice results in the generation of large numbers of CD141+ and CD1c+ dendritic cells in vivo. J Immunol 192:1982–1989. https://doi.org/10.4049/jimmunol.1302391.
Domínguez PM, Ardavín C (2010) Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol Rev 234:90–104. https://doi.org/10.1111/j.0105-2896.2009.00876.x.
Domogalla SS, Rostan MP, Raker PV et al (2017) Tolerance through education: How tolerogenic dendritic cells shape immunity. Front Immunol 8:1764. https://doi.org/10.3389/fimmu.2017.01764.
Du MR, Guo PF, Piao HL et al (2014) Embryonic trophoblasts induce decidual regulatory T cell differentiation and maternal–fetal tolerance through thymic stromal lymphopoietin instructing dendritic cells. J Immunol 192:1502–1511. https://doi.org/10.4049/jimmunol.1203425.
Ehrentraut S, Sauss K, Neumeister R et al (2019) Human miscarriage is associated with dysregulations in peripheral blood-derived myeloid dendritic cell subsets. Front Immunol 10:2440. https://doi.org/10.3389/fimmu.2019.02440.
Eisenbarth SC (2019) Dendritic cell subsets in T cell programming: Location dictates function. Nat Rev Immunol 19:89–103. https://doi.org/10.1038/s41577-018-0088-1.
El Hachem H, Crepaux V, May-Panloup P et al (2017) Recurrent pregnancy loss: Current perspectives. Int J Womens Health 9:331–345. http://dx.doi.org/10.2147/IJWH.S100817.
Elftman MD, Norbury CC, Bonneau RH et al (2007) Corticosterone impairs dendritic cell maturation and function. Immunology 122:279–290. https://doi.org/10.1111%2Fj.1365-2567.2007.02637.x.
Ellis JE, Ansari AA, Fett JD (2005) Inhibition of progenitor dendritic cell maturation by plasma from patients with peripartum cardiomyopathy: Role in pregnancy-associated heart disease. Clin Dev Immunol 12:265–273. https://doi.org/10.1080/17402520500304352.
Escribese MM, Rodríguez-García M, Sperling R et al (2011) Alpha-defensins 1–3 release by dendritic cells is reduced by estrogen. Reprod Biol Endocrinol 9:118. https://doi.org/10.1186/1477-7827-9-118.
Eskandarian M, Moazzeni SM (2019) Uterine dendritic cells modulation by mesenchymal stem cells provides a protective micro-environment at the feto-maternal interface: Improved pregnancy outcome in abortion-prone mice. Cell J 21:274–280. https://doi.org/10.22074%2Fcellj.2019.6239.
Fancke B, Suter M, Hochrein H et al (2008) M-CSF: A novel plasmacytoid and conventional dendritic cell poietin. Blood 111:150–159. https://doi.org/10.1182/blood-2007-05-089292.
Fang WN, Shi M, Meng CY et al (2016) The balance between conventional DCs and plasmacytoid DCs is pivotal for immunological tolerance during pregnancy in the mouse. Sci Rep 6:26984. https://doi.org/10.1038/srep26984.
Farah O, Nguyen C, Tekkatte C et al (2020) Trophoblast lineage-specific differentiation and associated alterations in preeclampsia and fetal growth restriction. Placenta 102:4–9. https://doi.org/10.1016/j.placenta.2020.02.007.
Fauci AS, Dale DC (1974) The effect of in vivo hydrocortisone on subpopulations of human lymphocytes. J Clin Invest 53:240–246. https://doi.org/10.1172/jci107544.
Fauci AS, Dale DC (1975) The effect of hydrocortisone on the kinetics of normal human lymphocytes. Blood 46:235–243. https://doi.org/10.1182/blood.V46.2.235.235.
Ferlazzo G, Pack M, Thomas D et al (2004) Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci U S A 101:16606–166011. https://doi.org/10.1073/pnas.0407522101.
Ferris ST, Durai V, Wu R et al (2020) cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584:624–629. https://doi.org/10.1038/s41586-020-2611-3.
Feuerer M, Herrero L, Cipolletta D et al (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15:930–939. https://doi.org/10.1038/nm.2002.
Fogg DK, Sibon C, Miled C et al (2006) A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311:83–87. https://doi.org/10.1126/science.1117729.
Founds SA, Conley YP, Lyons-Weiler JF et al (2009) Altered global gene expression in first trimester placentas of women destined to develop preeclampsia. Placenta 30:15–24. https://doi.org/10.1016/j.placenta.2008.09.015.
Founds SA, Fallert-Junecko B, Reinhart TA (2013) LAIR2-expressing extravillous trophoblasts associate with maternal spiral arterioles undergoing physiologic conversion. Placenta 34:248–255. https://doi.org/10.1016/j.placenta.2012.09.017.
Gardner L, Moffett A (2003) Dendritic cells in the human decidua. Biol Reprod 69:1438–1446. https://doi.org/10.1095/biolreprod.103.017574.
Garrido-Gimenez C, Alijotas-Reig J (2015) Recurrent miscarriage: Causes, evaluation and management. Postgrad Med J 91:151–162. https://doi.org/10.1136/postgradmedj-2014-132672.
Geissmann F, Manz MG, Jung S et al (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661. https://doi.org/10.1126/science.1178331.
Georgantas RW, Hildreth R, Morisot S et al (2007) CD34+ hematopoietic stem-progenitor cell microRNA expression and function: A circuit diagram of differentiation control. Proc Natl Acad Sci U S A 104:2750–2755. https://doi.org/10.1073/pnas.0610983104.
Ginhoux F, Jung S (2014) Monocytes and macrophages: Developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392–404. https://doi.org/10.1038/nri3671.
Goldenberg RL, Culhane JF, Iams JD et al (2008) Epidemiology and causes of preterm birth. Lancet 371:75–84. https://doi.org/10.1016/s0140-6736(08)60074-4.
Greter M, Helft J, Chow A et al (2012) GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity 36:1031–1046. https://doi.org/10.1016/j.immuni.2012.03.027.
Gu AQ, Li DD, Wei DP et al (2019) Cytochrome P450 26A1 modulates uterine dendritic cells in mice early pregnancy. J Cell Mol Med 23:5403–5414. https://doi.org/10.1111%2Fjcmm.14423.
Gu K, Walpole C, Gooneratne S et al (2022) DROSHA but not DICER is required for human haematopoietic stem cell function. Clin Transl Immunology 11:e1361. https://doi.org/10.1002/cti2.1361.
Hackstein H, Taner T, Zahorchak AF et al (2003) Rapamycin inhibits IL-4-induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood 101:4457–4463. https://doi.org/10.1182/blood-2002-11-3370.
Hashimi ST, Fulcher JA, Chang MH et al (2009) MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood 114:404–414. https://doi.org/10.1182/blood-2008-09-179150.
Hawiger D, Inaba K, Dorsett Y et al (2001) Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 194:769–780. https://doi.org/10.1084/jem.194.6.769.
Heger L, Hatscher L, Liang C et al (2023) XCR1 expression distinguishes human conventional dendritic cell type 1 with full effector functions from their immediate precursors. Proc Natl Acad Sci U S A 120:e2300343120. https://doi.org/10.1073/pnas.2300343120.
Hopkins RA, Connolly JE (2012) The specialized roles of immature and mature dendritic cells in antigen cross-presentation. Immunol Res 53:91–107. https://doi.org/10.1007/s12026-012-8300-z.
Huang C, Zhang H, Chen X (2016) Association of peripheral blood dendritic cells with recurrent pregnancy loss: A case-controlled study. Am J Reprod Immunol 76:326–332. https://doi.org/10.1111/aji.12550.
Huang SJ, Chen CP, Schatz F et al (2008) Pre-eclampsia is associated with dendritic cell recruitment into the uterine decidua. J Pathol 214:328–336. https://doi.org/10.1002/path.2257.
Huang SJ, Zenclussen AC, Chen CP et al (2010) The implication of aberrant GM-CSF expression in decidual cells in the pathogenesis of preeclampsia. Am J Pathol 177:2472–2482. https://doi.org/10.2353/ajpath.2010.091247.
Hubo M, Trinschek B, Kryczanowsky F et al (2013) Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells. Front Immunol 4:82. https://doi.org/10.3389/fimmu.2013.00082.
Huck B, Steck T, Habersack M et al (2005) Pregnancy associated hormones modulate the cytokine production but not the phenotype of PBMC-derived human dendritic cells. Eur J Obstet Gynecol Reprod Biol 122:85–94. https://doi.org/10.1016/j.ejogrb.2005.02.017.
Hughes GC, Clark EA (2007) Regulation of dendritic cells by female sex steroids: Relevance to immunity and autoimmunity. Autoimmunity 40:470–481. https://doi.org/10.1080/08916930701464764.
Hunt JS, Robertson SA (1996) Uterine macrophages and environmental programming for pregnancy success. J Reprod Immunol 32:1–25. https://doi.org/10.1016/S0165-0378(96)88352-5.
Huppertz B, Kingdom J, Caniggia I et al (2003) Hypoxia favours necrotic versus apoptotic shedding of placental syncytiotropho-blast into the maternal circulation. Placenta 24:181–190. https://doi.org/10.1053/plac.2002.0903.
Iijima N, Thompson JM, Iwasaki A (2008) Dendritic cells and macrophages in the genitourinary tract. Mucosal Immunol 1:451–459. https://doi.org/10.1038/mi.2008.57.
Ivanova E, Kyurkchiev D, Altankova I et al (2005) CD83+ monocyte-derived dendritic cells are present in human decidua and progesterone induces their differentiation in vitro. Am J Reprod Immunol 53:199–205. https://doi.org/10.1111/j.1600-0897.2005.00266.x.
Jena MK, Nayak N, Chen K et al (2019) Role of macrophages in pregnancy and related complications. Arch Immunol Ther Exp 67:295–309. https://doi.org/10.1007%2Fs00005-019-00552-7.
Jeras M, Bergant M, Repnik U et al (2005) In vitro preparation and functional assessment of human monocyte-derived dendritic cells—potential antigen-specific modulators of in vivo immune responses. Transplant Immunol 14:231–244. https://doi.org/10.1016/j.trim.2005.03.012.
Johanson TM, Keown AA, Cmero M et al (2015) Drosha controls dendritic cell development by cleaving messenger RNAs encoding inhibitors of myelopoiesis. Nat Immunol 16:1134–1141. https://doi.org/10.1038/ni.3293.
Jonuleit H, Schmitt E, Schuler G et al (2000) Induction of interleukin 10–producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192:1213–1222. https://doi.org/10.1084/jem.192.9.1213.
Jung S, Unutmaz D, Wong P et al (2002) In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17:211–220. https://doi.org/10.1016/s1074-7613(02)00365-5.
Juretic K, Strbo N, Crncic TB et al (2004) An insight into the dendritic cells at the maternal–fetal interface. Am J Reprod Immunol 52:350–355. https://doi.org/10.1111/j.1600-0897.2004.00232.x.
Kämmerer U, Eggert AO, Kapp M et al (2003) Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy. Am J Pathol 162:887–896. https://doi.org/10.1016/s0002-9440(10)63884-9.
Kammerer U, Kruse A, Barrientos G et al (2008) Role of dendritic cells in the regulation of maternal immune responses to the fetus during mammalian gestation. Immunol Invest 37:499–533. https://doi.org/10.1080/08820130802191334.
Kämmerer U, Schoppet M, McLellan AD et al (2000) Human decidua contains potent immunostimulatory CD83+ dendritic cells. Am J Pathol 157:159–169. https://doi.org/10.1016%2FS0002-9440(10)64527-0.
Kaplan DH (2010) In vivo function of Langerhans cells and dermal dendritic cells. Trends Immunol 31:446–451. https://doi.org/10.1016%2Fj.it.2010.08.006.
Karrich JJ, Jachimowski LC, Libouban M et al (2013) MicroRNA-146a regulates survival and maturation of human plasmacytoid dendritic cells. Blood 122:3001–3009. https://doi.org/10.1182/blood-2012-12-475087.
Karsten CM, Behrends J, Wagner AK et al (2009) DC within the pregnant mouse uterus influence growth and functional properties of uterine NK cells. Eur J Immunol 39:2203–2214. https://doi.org/10.1002/eji.200838844.
Kashem SW, Haniffa M, Kaplan DH (2017) Antigen-presenting cells in the skin. Annu Rev Immunol 35:469–499. https://doi.org/10.1146/annurev-immunol-051116-052215.
Keelan JA, Blumenstein M, Helliwell RJ et al (2003) Cytokines, pros-taglandins and parturition—a review. Placenta 24:S33–S46. https://doi.org/10.1053/plac.2002.0948.
Komi J, Lassila O (2000) Nonsteroidal anti-estrogens inhibit the functional differentiation of human monocyte-derived dendritic cells. Blood 95:2875–2882. https://doi.org/10.1182/blood.V95.9.2875.009k12_2875_2882.
Kovats S (2012) Estrogen receptors regulate an inflammatory pathway of dendritic cell differentiation: Mechanisms and implications for immunity. Horm Behav 62:254–262. https://doi.org/10.1016%2Fj.yhbeh.2012.04.011.
Krey G, Frank P, Shaikly V et al (2008) In vivo dendritic cell depletion reduces breeding efficiency, affecting implantation and early placental development in mice. J Mol Med 86:999–1011. https://doi.org/10.1007/s00109-008-0379-2.
Kwan M, Hazan A, Zhang J et al (2014) Dynamic changes in maternal decidual leukocyte populations from first to second trimester gestation. Placenta 35:1027–1034. https://doi.org/10.1016/j.placenta.2014.09.018.
Kwiatek M, Gęca T, Krzyżanowski A et al (2015) Peripheral dendritic cells and CD4+CD25+Foxp3+ regulatory T cells in the first trimester of normal pregnancy and in women with recurrent miscarriage. PLoS One 10:e0124747. https://doi.org/10.1371/journal.pone.0124747ssss.
Lai N, Fu X, Hei G et al (2022) The role of dendritic cell subsets in recurrent spontaneous abortion and the regulatory effect of baicalin on it. J Immunol Res 2022:9693064. https://doi.org/10.1155/2022/9693064.
Laskarin G, Gulic T, Gacanin LG et al (2018) Assessing whether progesterone-matured dendritic cells are responsible for retention of fertilization products in missed abortion. Med Hypotheses 118:169–173. https://doi.org/10.1016/j.mehy.2018.04.008.
Laškarin G, Kämmerer U, Rukavina D et al (2007) Antigen-presenting cells and materno-fetal tolerance: An emerging role for dendritic cells. Am J Reprod Immunol 58:255–267. https://doi.org/10.1111/j.1600-0897.2007.00511.x.
Laškarin G, Redžović A, Rubeša Ž et al (2008) Decidual natural killer cell tuning by autologous dendritic cells. Am J Reprod Immunol 59:433–445. https://doi.org/10.1111/j.1600-0897.2008.00599.x.
Laskarin G, Redzovic A, Vlastelic I et al (2011) Tumor-associated glycoprotein (TAG-72) is a natural ligand for the C-type lectin-like domain that induces anti-inflammatory orientation of early pregnancy decidual CD1a+ dendritic cells. J Reprod Immunol 88:12–23. https://https://doi.org/10.1016/j.jri.2010.10.001.
Le Gars M, Kay AW, Bayless NL (2016) Increased proinflamma-tory responses of monocytes and plasmacytoid dendritic cells to influenza A virus infection during pregnancy. J Infect Dis 214:1666–1671. https://doi.org/10.1093/infdis/jiw448.
Lee JY, Lee M, Lee SK (2011) Role of endometrial immune cells in implantation. Clin Exp Reprod Med 38:119. https://doi.org/10.5653%2Fcerm.2011.38.3.119.
Leno-Durán E, Muñoz-Fernández R, Olivares EG et al (2014) Liaison between natural killer cells and dendritic cells in human gestation. Cell Mol Immunol 11:449–455. https://doi.org/10.1038/cmi.2014.36.
León B, López-Bravo M, Ardavín C (2007) Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26:519–531. https://doi.org/10.1016/j.immuni.2007.01.017.
Li J, Huang L, Wang S et al (2019) The prevalence of regulatory T and dendritic cells is altered in peripheral blood of women with pre-eclampsia. Pregnancy Hypertens 17:233–240. https://doi.org/10.1016/j.preghy.2019.07.003.
Li L, Yang J, Jiang Y et al (2015) Activation of decidual invariant natural killer T cells promotes lipopolysaccharide-induced preterm birth. Mol Hum Reprod 21:369–381. https://doi.org/10.1093/molehr/gav001.
Li M, Wu ZM, Yang H et al (2011) NFκB and JNK/MAPK activation mediates the production of major macrophage-or dendritic cell-recruiting chemokine in human first trimester decidual cells in response to proinflammatory stimuli. J Clin Endocrinol Metab 96:2502–2511. https://doi.org/10.1210%2Fjc.2011-0055.
Li Y, Lopez GE, Vazquez J et al (2018) Decidual-placental immune landscape during syngeneic murine pregnancy. Front Immunol 9:2087. https://doi.org/10.3389%2Ffimmu.2018.02087.
Liang J, Sun L, Wang Q et al (2006) Progesterone regulates mouse dendritic cells differentiation and maturation. Int Immunopharmacol 6:830–838. https://doi.org/10.1016/j.vetimm.2016.09.007.
Liao R, Sun J, Zhang L et al (2008) MicroRNAs play a role in the development of human hematopoietic stem cells. J Cell Biochem 104:805–817. https://doi.org/10.1002/jcb.21668.
Liu HY, Buenafe AC, Matejuk A et al (2002) Estrogen inhibition of EAE involves effects on dendritic cell function. J Neurosci Res 70:238–248. https://doi.org/10.1002/jnr.10409.
Liu K, Victora GD, Schwickert TA et al (2009) In vivo analysis of dendritic cell development and homeostasis. Science 324:392–397. https://doi.org/10.1126/science.1170540.
Liu S, Wei H, Li Y et al (2018) Downregulation of ILT 4+ dendritic cells in recurrent miscarriage and recurrent implantation failure. Am J Reprod Immunol 80:e12998. https://doi.org/10.1111/aji.12998.
Liu TT, Kim S, Desai P et al (2022) Ablation of cDC2 development by triple mutations within the Zeb2 enhancer. Nature 607:142–148. https://doi.org/10.1038/s41586-022-04866-z.
Liu YJ (2001) Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106:259–262. https://doi.org/10.1016/s0092-8674(01)00456-1.
Liu Z, Wang H, Li Z et al (2023) Dendritic cell type 3 arises from Ly6C+ monocyte-dendritic cell progenitors. Immunity 56:1761–1777.e6. https://doi.org/10.1016/j.immuni.2023.07.001.
Lu C, Huang X, Zhang X et al (2011) miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood 117:4293–4303. https://doi.org/10.1182/blood-2010-12-322503.
Lu HQ, Hu R (2019) The role of immunity in the pathogenesis and development of pre-eclampsia. Scan J Immunol 90:e12756. https://doi.org/10.1111/sji.12756.
Lutz MB, Schuler G (2002) Immature, semi-mature and fully mature dendritic cells: Which signals induce tolerance or immunity? Trends Immunol 23:445–449. https://doi.org/10.1016/s1471-4906(02)02281-0.
Magatti M, De Munari S, Vertua E et al (2009) Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes. Cell Transplant 18:899–914. https://doi.org/10.3727/096368909x471314.
Mahnke K, Knop J, Enk AH (2003) Induction of tolerogenic DCs: ‘you are what you eat’. Trends Immunol 24:646–651. https://doi.org/10.1016/j.it.2003.09.012.
Mantovani A, Sica A, Sozzani S et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686. https://doi.org/10.1016/j.it.2004.09.015.
Martinez FO, Sica A, Mantovani A et al (2008) Macrophage activation and polarization. Front Biosci 13:453–461. https://doi.org/10.2741/2692.
Martinez-Nunez RT, Louafi F, Friedmann PS et al (2009) MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J Biol Chem 284:16334–16342. https://doi.org/10.1074/jbc.M109.011601.
Marzaioli V, Canavan M, Floudas A et al (2020) Monocyte-derived dendritic cell differentiation in inflammatory arthritis is regulated by the JAK/STAT axis via NADPH oxidase regulation. Front Immunol 11:1406. https://doi.org/10.3389/fimmu.2020.01406.
McGovern N, Shin A, Low G et al (2017) Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature 546:662–666. https://doi.org/10.1038/nature22795.
McKenna HJ, Stocking KL, Miller RE et al (2000) Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95:3489–3497. https://doi.org/10.1182/blood.V95.11.3489.
Menon R (2016) Spontaneous preterm birth, a clinical dilemma: Etiologic, pathophysiologic and genetic heterogeneities and racial disparity. Acta Obstet Gynecol Scand 95:590–605. https://doi.org/10.1080/00016340802005126.
Merad M, Manz MG. (2009) Dendritic cell homeostasis. Blood 113:3418–3427. https://doi.org/10.1182/blood-2008-12-180646.
Merad M, Sathe P, Helft J et al (2013) The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563–604. https://doi.org/10.1146/annurev-immunol-020711-074950.
Mildner A, Chapnik E, Manor O et al (2013a) Mononuclear phagocyte miRNome analysis identifies miR-142 as critical regulator of murine dendritic cell homeostasis. Blood 121:1016–1027. https://doi.org/10.1182/blood-2012-07-445999.
Mildner A, Jung S (2014) Development and function of dendritic cell subsets. Immunity 40:642–656. https://doi.org/10.1016/j.immuni.2014.04.016.
Mildner A, Yona S, Jung S (2013b) A close encounter of the third kind: Monocyte-derived cells. Adv Immunol 120:69–103. https://doi.org/10.1016/b978-0-12-417028-5.00003-x.
Mills CD, Kincaid K, Alt JM et al (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173. https://doi.org/10.4049/jimmunol.164.12.6166.
Mills PJ (2001) Peripheral leukocyte subpopulations and catecholamine levels in astronauts as a function of mission duration. Psychosom Med 63:886–90. https://doi.org/10.1097/00006842-200111000-00006.
Mincheva-Nilsson L, Nagaeva O, Chen T et al (2006) Placenta-derived soluble MHC class I chain-related molecules down-regulate NKG2D receptor on peripheral blood mononuclear cells during human pregnancy: A possible novel immune escape mechanism for fetal survival. J Immunol 176:3585–3592. https://doi.org/10.4049/jimmunol.176.6.3585.
Miranda S, Litwin S, Barrientos G et al (2006) Dendritic cells therapy confers a protective microenvironment in murine pregnancy. Scand J Immunol 64:493–499. https://doi.org/10.1111/j.1365-3083.2006.01841.x.
Miyazaki S, Tsuda H, Sakai M et al (2003) Predominance of Th2-promoting dendritic cells in early human pregnancy decidua. J Leukoc Biol 74:514–522. https://doi.org/10.1189/jlb.1102566.
Mol BWJ, Roberts CT, Thangaratinam S et al (2016) Preeclampsia. Lancet 387:999–1011. https://doi.org/10.1016/S0140-6736(15)00070-7.
Morelli AE, Di Paola G, Fainboim L (1992) Density and distribution of Langerhans cells in the human uterine cervix. Arch Gynecol Obstet 252:65–71. https://doi.org/10.1007/bf02389630.
Moser M (2003) Dendritic cells in immunity and tolerance—do they display opposite functions? Immunity 19:5–8. https://doi.org/10.1016/s1074-7613(03)00182-1.
Naik SH, Metcalf D, Van Nieuwenhuijze A et al (2006) Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat Immunol 7:663–671. https://doi.org/10.1038/ni1340.
Naik SH, Sathe P, Park HY et al (2007) Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol 8:1217–1226. https://doi.org/10.1038/ni1522.
Negishi Y, Shima Y, Takeshita T et al (2017) Distribution of invariant natural killer T cells and dendritic cells in late pre-term birth without acute chorioamnionitis. Am J Reprod Immunol 77:e12658. https://doi.org/10.1111/aji.12658.
Negishi Y, Wakabayashi A, Shimizu M et al (2012) Disruption of maternal immune balance maintained by innate DC subsets results in spontaneous pregnancy loss in mice. Immunobiology 217:951–961. https://doi.org/10.1016/j.imbio.2012.01.011.
O’doherty U, Peng M, Gezelter S et al (1994) Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 82:487–493.
O’Keeffe M, Fancke B, Hochrein H (2010) The generation of plasmacytoid and conventional dendritic cells with M-CSF. Methods Mol Biol 595:187–193. https://doi.org/10.1007/978-1-60761-421-0_12.
Onai N, Obata-Onai A, Schmid MA et al (2007) Identification of clonogenic common Flt3+ M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol 8:1207–1216. https://doi.org/10.1038/ni1518.
Ooi AG, Sahoo D, Adorno M et al (2010) MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. Proc Natl Acad Sci U S A 105:21505–21510. https://doi.org/10.1073/pnas.1016218107.
Pakalniškytė D, Schraml BU (2017) Tissue-specific diversity and functions of conventional dendritic cells. Adv Immunol 134:89–135. https://doi.org/10.1016/bs.ai.2017.01.003.
Peters JH, Xu H, Ostermeier D et al (1993) Signals required for differentiating dendritic cells from human monocytes in vitro. Adv Exp Med Biol 329:275–280. https://doi.org/10.1007/978-1-4615-2930-9_46.
Pickford GE, Srivastava AK, Slicher AM et al (1971) The stress response in the abundance of circulating leukocytes in the killifish, Fundulus heteroclitus . I The cold-shock sequence and the effects of hypophysectomy. J Exp Zool 177:89–96. https://doi.org/10.1002/jez.1401770110.
Plaks V, Birnberg T, Berkutzki T et al (2008) Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Invest 118:3954–3965. https://doi.org/10.1172%2FJCI36682.
Poltorak MP, Schraml BU (2015) Fate mapping of dendritic cells. Front Immunol 6:199. https://doi.org/10.3389/fimmu.2015.00199.
Pomeroy B, Klaessig S, Schukken Y (2016) Impact of in vitro treatments of physiological levels of estradiol and progesterone observed in pregnancy on bovine monocyte-derived dendritic cell differentiation and maturation. Vet Immunol Immunopathol 182:37–42. https://doi.org/10.1016/j.vetimm.2016.09.007.
Puts JJ, Moesker O, De Waal RM et al (1986) Immunohistochemical identification of Langerhans cells in normal epithelium and in epithelial lesions of the uterine cervix. Int J Gynecol Pathol 5:151–162. https://doi.org/10.1016/0090-8258(89)90511-8.
Qian ZD, Huang LL, Zhu XM (2015) An immunohistochemical study of CD83-and CD1a-positive dendritic cells in the decidua of women with recurrent spontaneous abortion. Eur J Med Res 20:1–7. http://dx.doi.org/10.1186/s40001-014-0076-2.
Redline RW, Boyd TK, Roberts DJ (2018) Placental and gestational pathology. Cambridge University Press, Cambridge, UK.
Redwine L (2003) Acute psychological stress: Effects on chemotaxis and cellular adhesion molecule expression. Psychosom Med 65:598–603. https://doi.org/10.1097/01.psy.0000079377.86193.a8.
Redwine L (2004) Differential immune cell chemotaxis responses to acute psychological stress in Alzheimer caregivers compared to non-caregiver controls. Psychosom Med 66:770–775. https://doi.org/10.1097/01.psy.0000138118.62018.87.
Reizis B (2010) Regulation of plasmacytoid dendritic cell development. Curr Opin Immunol 22:206–211. https://doi.org/10.1016%2Fj.coi.2010.01.005.
Reizis B (2019) Plasmacytoid dendritic cells: Development, regulation, and function. Immunity 50:37–50. https://doi.org/10.1016/j.immuni.2018.12.027.
Reizis B, Bunin A, Ghosh HS et al (2011) Plasmacytoid dendritic cells: Recent progress and open questions. Annu Rev Immunol 29:163–183. https://doi.org/10.1146/annurev-immunol-031210-101345.
Rinder CS (1997) Lymphocyte and monocyte subset changes during cardiopulmonary bypass: Effects of aging and gender. J Lab Clin Med 129:592–602. https://doi.org/10.1016/s0022-2143(97)90193-1.
Romero R, Mazor M, Munoz H (1994) The preterm labor syndrome. Ann N Y Acad Sci 734:414–429. https://doi.org/10.1111/j.1749-6632.1994.tb21771.x.
Ruiz RJ, Jallo N, Murphey C et al (2012) Second trimester maternal plasma levels of cytokines IL-1Ra, IL-6 and IL-10 and pre-term birth. J Perinatol 32:483–490. https://doi.org/10.1038/jp.2011.193.
Rukavina D, Rubeša G, Gudelj L et al (1995) Characteristics of perforin expressing lymphocytes within the first trimester decidua of human pregnancy. Am J Reprod Immunol 33:394–404. https://doi.org/10.1111/j.1600-0897.1995.tb00908.x.
Saito S, Nakashima A, Shima T et al (2010) Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol 63:601–610. https://doi.org/10.1111/j.1600-0897.2010.00852.x.
Sakaguchi S, Sakaguchi N, Asano M et al (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164.
Salamone G, Fraccaroli L, Gori S et al (2012) Trophoblast cells induce a tolerogenic profile in dendritic cells. Hum Reprod 27:2598–2606. https://doi.org/10.1093/humrep/des208.
Sauss K, Ehrentraut S, Zenclussen AC et al (2018) The pregnancy hormone human chorionic gonadotropin differentially regulates plasmacytoid and myeloid blood dendritic cell subsets. Am J Reprod Immunol 79:e12837. https://doi.org/10.1111/aji.12837.
Savage PA, Klawon DEJ, Miller CH (2020) Regulatory T cell development. Annu Rev Immunol 38:421–453. https://doi.org/10.1146/annurev-immunol-100219-020937.
Savage PA, Malchow S, Leventhal DS (2013) Basic principles of tumor-associated regulatory T cell biology. Trends Immunol 34:33–40. https://doi.org/10.1016/j.it.2012.08.005.
Schroder K, Hertzog PJ, Ravasi T et al (2004) Interferon-gamma: An overview of signals, mechanisms and functions. J Leukoc Biol 75:163–189. https://doi.org/10.1189/jlb.0603252.
Schumacher A (2017) Human chorionic gonadotropin as a pivotal endocrine immune regulator initiating and preserving fetal tolerance. Int J Mol Sci 18:2166. https://doi.org/10.3390/ijms18102166.
Schumacher A, Dauven D, Zenclussen AC (2017) Progesterone-driven local regulatory T cell induction does not prevent fetal loss in the CBA/J× DBA/2J abortion-prone model. Am J Reprod Immunol 77:e12626. https://doi.org/10.1111/aji.12626.
Segerer SE, Staib C, Kaemmerer U et al (2012) Dendritic cells: Elegant arbiters in human reproduction. Curr Pharm Biotechnol 13:1378–1384. https://doi.org/10.2174/138920112800784916.
Segura E, Amigorena S (2013) Inflammatory dendritic cells in mice and humans. Trends Immunol 34:440–445. https://doi.org/10.1016/j.it.2013.06.001.
Shah NM, Herasimtschuk AA, Boasso A et al (2017) Changes in T cell and dendritic cell phenotype from mid to late pregnancy are indicative of a shift from immune tolerance to immune activation. Front Immunol 8:1138. https://doi.org/10.3389/fimmu.2017.01138.
Shao Q, Liu X, Huang Y et al (2020) Human decidual stromal cells in early pregnancy induce functional re-programming of monocyte-derived dendritic cells via crosstalk between G-CSF and IL-1β. Front Immunol 11:574270. https://doi.org/10.3389/fimmu.2020.574270.
Shen GM, Zhou MQ, Xu GS et al (2006) Role of vasoactive intestinal peptide and nitric oxide in the modulation of electroacupucture on gastric motility in stressed rats. World J Gastroenterol 12: 6156–6160. https://doi.org/10.3748%2Fwjg.v12.i38.6156.
Shin S, Jang JY, Roh EY et al (2009) Differences in circulating dendritic cell subtypes in pregnant women, cord blood and healthy adult women. J Korean Med Sci 24:853–859. https://doi.org/10.3346/jkms.2009.24.5.853.
Shortman K, Naik SH (2007) Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7:19–30. https://doi.org/10.1038/nri1996.
Shortman K, Sathe P, Vremec D et al (2013) Plasmacytoid dendritic cell development. Adv Immunol 120:105–126. https://doi.org/10.1016/B978-0-12-417028-5.00004-1.
Smits HH, de Jong EC, Wierenga EA (2005) Different faces of regulatory DCs in homeostasis and immunity. Trends Immunol 26:123–129. https://doi.org/10.1016/j.it.2005.01.002.
Spong CY, Lee SJ, McCune SK et al (1999) Regulation of postim-plantation mouse embryonic growth by maternal vasoactive intestinal peptide. Ann NY Acad Sci 897:101–108. https://doi.org/10.1111/j.1749-6632.1999.tb07882.x.
Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice: I. Morphology, quantitation, tissue distribution. J Exp Med 137:1142–1162. https://doi.org/10.1084/jem.137.5.1142.
Steinman RM, Cohn ZA (1974) Identification of a novel cell type in peripheral lymphoid organs of mice: II. Functional properties in vitro. J Exp Med 139:380–397. https://doi.org/10.1084/jem.139.2.380.
Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711. https://doi.org/10.1146/annurev.immunol.21.120601.141040.
Steinman RM, Lustig DS, Cohn ZA (1974) Identification of a novel cell type in peripheral lymphoid organs of mice: III. Functional properties in vivo. J Exp Med 139:1431–1445. https://doi.org/10.1084/jem.139.6.1431.
Su X, Qian C, Zhang Q et al (2013) miRNomes of haematopoietic stem cells and dendritic cells identify miR-30b as a regulator of Notch1. Nat Commun 4:2903. https://doi.org/10.1038/ncomms3903.
Svensson-Arvelund J, Mehta RB, Lindau R et al (2017) The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages. J Immunol 198:3749–3761. https://doi.org/10.4049/jimmunol.1401536.
Swiecki M, Colonna M (2015) The multifaceted biology of plasma-cytoid dendritic cells. Nat Rev Immunol 15:471–485. https://doi.org/10.1038/nri3865.
Szekeres-Bartho J, Barakonyi A, Polgar B et al (1999) The role of γ/δ T cells in progesterone-mediated immunomodulation during pregnancy: A review. Am J Reprod Immunol 42:44–48. https://doi.org/10.1111/j.1600-0897.1999.tb00464.x.
Taglauer ES, Waldorf KMA, Petroff MG (2010) The hidden maternal-fetal interface: Events involving the lymphoid organs in maternal-fetal tolerance. Int J Dev Biol 54:421. https://doi.org/10.1387/ijdb.082800et.
Tagliani E, Erlebacher A (2011) Dendritic cell function at the maternal-fetal interface. Expert Rev Clin Immunol 7:593–602. https://doi.org/10.1586/eci.11.52.
Tagliani E, Shi C, Nancy P et al (2011) Coordinate regulation of tissue macrophage and dendritic cell population dynamics by CSF-1. J Exp Med 208:1901–1916. https://doi.org/10.1084/jem.20110866.
Takenaka MC, Quintana FJ (2017) Tolerogenic dendritic cells. Semin Immunopathol 39:113–120. https://doi.org/10.1146/annurev.immunol.21.120601.141040.
Tang-Huau TL, Segura E (2019) Human in vivo-differentiated monocyte-derived dendritic cells. Semin Cell Dev Biol 86:44–49. https://doi.org/10.1016/j.semcdb.2018.02.018.
Terness P, Kallikourdis M, Betz AG et al (2007) Tolerance signaling molecules and pregnancy: IDO, galectins, and the renaissance of regulatory T cells. Am J Reprod Immunol 58:238–254. https://doi.org/10.1111/j.1600-0897.2007.00510.x.
Tian Y, Meng L, Zhang Y (2017) Epigenetic regulation of dendritic cell development and function. Cancer J 23:302–307. https://doi.org/10.1097/PPO.0000000000000280.
Tirado-González I, Muñoz-Fernández R, Prados A et al (2012) Apoptotic DC-SIGN+ cells in normal human decidua. Placenta 33:257–263. https://doi.org/10.1016/j.placenta.2012.01.003.
Vacca P, Cantoni C, Vitale M et al (2010) Crosstalk between decidual NK and CD141 myelomonocytic cells results in induction of Tregs and immunosuppression. Proc Natl Acad Sci U S A 107:11918–11923. https://doi.org/10.1073/pnas.1001749107.
Vremec D, Lieschke GJ, Dunn AR et al (1997) The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs. Eur J Immunol 27:40–44. https://doi.org/10.1002/eji.1830270107.
Wadhwa PD, Culhane JF, Rauh V et al (2001) Stress and pre-term birth: Neuroendocrine, immune/inflammatory, and vascular mechanisms. Matern Child Health J 5:119–125. https://doi.org/10.1023/a:1011353216619.
Wahid HH, Dorian CL, Chin PY et al (2015) Toll-like receptor 4 is an essential upstream regulator of on-time parturition and perinatal viability in mice. Endocrinology 156:3828–3841. https://doi.org/10.1210/en.2015-1089.
Wang H, He M, Hou Y et al (2016) Role of decidual CD14+ macrophages in the homeostasis of maternal–fetal interface and the differentiation capacity of the cells during pregnancy and parturition. Placenta 38:76–83. https://doi.org/10.1016/j.placenta.2015.12.001.
Wang J, Su L, Zhu T et al (2013) Changes in the subsets of dendritic cells and T cells in peripheral blood of patients with preeclampsia. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 29:72–75.
Wang J, Tao YM, Cheng XY et al (2014) Dendritic cells derived from preeclampsia patients influence Th1/Th17 cell differentiation in vitro. Int J Clin Exp Med 7:5303–5309.
Waskow C, Liu K, Darrasse-Jèze G et al (2008) The receptor tyro-sine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol 9:676–683. https://doi.org/10.1038/ni.1615.
Wei R, Lai N, Zhao L et al (2021) Dendritic cells in pregnancy and pregnancy-associated diseases. Biomed Pharmacother 133:110921. https://doi.org/10.1016/j.biopha.2020.110921.
Wira CR, Roche MA, Rossoll RM (2002) Antigen presentation by vaginal cells: Role of TGFβ as a mediator of estradiol inhibition of antigen presentation. Endocrinology 143:2872–2879. https://doi.org/10.1210/endo.143.8.8938.
Xiong M, Lu J, Zhao A et al (2010) Therapy with FasL-gene–modified dendritic cells confers a protective microenvironment in murine pregnancy. Fertil Steril 93:2767–2769. https://doi.org/10.1016/j.fertnstert.2009.11.040.
Xu Y, He H, Li C et al (2011) Immunosuppressive effect of progesterone on dendritic cells in mice. J Reprod Immunol 91:17–23. https://doi.org/10.1016/j.jri.2011.06.101.
Yin X, Chen S, Eisenbarth SC (2021) Dendritic cell regulation of T helper cells. Annu Rev Immunol 39:759–790. https://doi.org/10.1146/annurev-immunol-101819-025146.
Yoshimura T, Inaba M, Sugiura K et al (2003) Analyses of dendritic cell subsets in pregnancy. Am J Reprod Immunol 50:137–145. https://doi.org/10.1034/j.1600-0897.2003.00063.x.
Zarnani AH, Moazzeni SM, Shokri F et al (2007) Kinetics of murine decidual dendritic cells. Reproduction 133:275–283. https://doi.org/10.1530/rep.1.01232.
Zhou H, Wu L (2017) The development and function of dendritic cell populations and their regulation by miRNAs. Protein Cell 8:501–513. https://doi.org/10.1007/s13238-017-0398-2.
Zhu J, Paul WE (2008) CD4 T cells: Fates, functions, and faults. Blood 112:1557–1569. https://doi.org/10.1182/blood-2008-05-078154.
Grant Information: R01 HD088549 United States HD NICHD NIH HHS
Contributed Indexing: Keywords: Dendritic cells; Endometrium; Hematopoietic stem cells; Placenta; Pregnancy
Entry Date(s): Date Created: 20240523 Date Completed: 20240523 Latest Revision: 20240625
Update Code: 20240625
DOI: 10.2478/aite-2024-0010
PMID: 38782369
ISSN: 1661-4917
DOI: 10.2478/aite-2024-0010
Database: MEDLINE