Academic Journal

Work Function Tuning in Hydrothermally Synthesized Vanadium-Doped MoO 3 and Co 3 O 4 Mesostructures for Energy Conversion Devices.

Bibliographic Details
Title: Work Function Tuning in Hydrothermally Synthesized Vanadium-Doped MoO 3 and Co 3 O 4 Mesostructures for Energy Conversion Devices.
Authors: Dalle Feste, Pietro, Crisci, Matteo, Barbon, Federico, Tajoli, Francesca, Salerno, Marco, Drago, Filippo, Prato, Mirko, Gross, Silvia, Gatti, Teresa, Lamberti, Francesco, Stylianakis, Minas M.
Source: Applied Sciences (2076-3417); Mar2021, Vol. 11 Issue 5, p2016, 13p
Abstract: The wide interest in developing green energy technologies stimulates the scientific community to seek, for devices, new substitute material platforms with a low environmental impact, ease of production and processing and long-term stability. The synthesis of metal oxide (MO) semiconductors fulfils these requirements and efforts are addressed towards optimizing their functional properties through the improvement of charge mobility or energy level alignment. Two MOs have rising perspectives for application in light harvesting devices, mainly for the role of charge selective layers but also as light absorbers, namely MoO3 (an electron blocking layer) and Co3O4 (a small band gap semiconductor). The need to achieve better charge transport has prompted us to explore strategies for the doping of MoO3 and Co3O4 with vanadium (V) ions that, when combined with oxygen in V2O5, produce a high work function MO. We report on subcritical hydrothermal synthesis of V-doped mesostructures of MoO3 and of Co3O4, in which a tight control of the doping is exerted by tuning the relative amounts of reactants. We accomplished a full analytical characterization of these V-doped MOs that unambiguously demonstrates the incorporation of the vanadium ions in the host material, as well as the effects on the optical properties and work function. We foresee a promising future use of these materials as charge selective materials in energy devices based on multilayer structures. [ABSTRACT FROM AUTHOR]
Subject Terms: ELECTRON work function, ENERGY conversion, METALLIC oxides, BAND gaps, CLEAN energy, HYDROTHERMAL synthesis, NARROW gap semiconductors
Copyright of Applied Sciences (2076-3417) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
ISSN: 20763417
DOI: 10.3390/app11052016
Database: Complementary Index