Academic Journal

Transient neuronal suppression for exploitation of new sensory evidence.

Bibliographic Details
Title: Transient neuronal suppression for exploitation of new sensory evidence.
Authors: Shinn, Maxwell, Lee, Daeyeol, Murray, John D., Seo, Hyojung
Source: Nature Communications; 10/23/2022, Vol. 13 Issue 1, p1-13, 13p
Abstract: In noisy but stationary environments, decisions should be based on the temporal integration of sequentially sampled evidence. This strategy has been supported by many behavioral studies and is qualitatively consistent with neural activity in multiple brain areas. By contrast, decision-making in the face of non-stationary sensory evidence remains poorly understood. Here, we trained monkeys to identify and respond via saccade to the dominant color of a dynamically refreshed bicolor patch that becomes informative after a variable delay. Animals' behavioral responses were briefly suppressed after evidence changes, and many neurons in the frontal eye field displayed a corresponding dip in activity at this time, similar to that frequently observed after stimulus onset but sensitive to stimulus strength. Generalized drift-diffusion models revealed consistency of behavior and neural activity with brief suppression of motor output, but not with pausing or resetting of evidence accumulation. These results suggest that momentary arrest of motor preparation is important for dynamic perceptual decision making. While evidence is constantly changing during real-world decisions, little is known about how the brain deals with such changes. Here, the authors show that the brain strategically suppresses motor output via the frontal eye fields in response to stimulus changes. [ABSTRACT FROM AUTHOR]
Subject Terms: TEMPORAL integration, DECISION making
Copyright of Nature Communications is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
ISSN: 20411723
DOI: 10.1038/s41467-021-27697-4
Database: Complementary Index