Academic Journal

Acid Leaching of Al- and Ta-Substituted Li 7 La 3 Zr 2 O 12 (LLZO) Solid Electrolyte.

Bibliographic Details
Title: Acid Leaching of Al- and Ta-Substituted Li 7 La 3 Zr 2 O 12 (LLZO) Solid Electrolyte.
Authors: Schneider, Kirstin, Kiyek, Vivien, Finsterbusch, Martin, Yagmurlu, Bengi, Goldmann, Daniel
Source: Metals (2075-4701); May2023, Vol. 13 Issue 5, p834, 17p
Abstract: Solid-state batteries (SSBs) are promising next-generation batteries due to their potential for achieving high energy densities and improved safety compared to conventional lithium-ion batteries (LIBs) with a flammable liquid electrolyte. Despite their huge market potential, very few studies have investigated SSB recycling processes to recover and reuse critical raw metals for a circular economy. For conventional LIBs, hydrometallurgical recycling has been proven to be able to produce high-quality products, with leaching being the first unit operation. Therefore, it is essential to establish a fundamental understanding of the leaching behavior of solid electrolytes as the key component of SSBs with different lixiviants. This work investigates the leaching of the most promising Al- and Ta-substituted Li7La3Zr2O12 (LLZO) solid electrolytes in mineral acids (H2SO4 and HCl), organic acids (formic, acetic, oxalic, and citric acid), and water. The leaching experiments were conducted using actual LLZO production waste in 1 M of acid at 1:20 S/L ratio at 25 °C for 24 h. The results showed that strong acids, such as H2SO4, almost completely dissolved LLZO. Encouraging selective leaching properties were observed with oxalic acid and water. This fundamental knowledge of LLZO leaching behavior will provide the basis for future optimization studies to develop innovative hydrometallurgical SSB recycling processes. [ABSTRACT FROM AUTHOR]
Subject Terms: SOLID electrolytes, LEACHING, CIRCULAR economy, FLAMMABLE liquids, OXALIC acid
Copyright of Metals (2075-4701) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
ISSN: 20754701
DOI: 10.3390/met13050834
Database: Complementary Index