Academic Journal

Deciphering Complex Morphology and Structural Connectivity of High-Magnitude Deep-Seated Landslides via Airborne Laser Scanning: A Case Study in the Vrancea Seismic Region, Romanian Carpathians.

Bibliographic Details
Title: Deciphering Complex Morphology and Structural Connectivity of High-Magnitude Deep-Seated Landslides via Airborne Laser Scanning: A Case Study in the Vrancea Seismic Region, Romanian Carpathians.
Authors: Micu, Mihai, Vasile, Mirela, Miron, Florin, Onaca, Alexandru, Sîrbu, Flavius
Source: Remote Sensing; Nov2023, Vol. 15 Issue 22, p5286, 21p
Abstract: In the Vrancea seismic region (Romanian Carpathians; the most important intermediate-depth seismic source of Europe), the morphology of the slopes is often marked by the existence of numerous high-magnitude, deep-seated active, dormant or relict landslides, which are the subjects of many cases of functional and structural connectivity. Due to the compact and extensive (coniferous and broad leaved) forest coverage and because of the lack of publicly available regional high-resolution DEMs, it is usually difficult to fully understand the morphogenetic framework of such large, deep-seated landslides in order to assess their frequency–magnitude relationship, a key issue in hazard quantification. However, the high impact of such landslides on river networks requires an in-depth understanding of the multi-hazard framework, as cascading effects are likely to affect the presently growing human activities developing along the valleys. Within a case study represented by a 2.5 km long deep-seated landslide, that caused a 500 m lateral occlusion of Buzău River, we used integrated remote sensing technologies (UAV laser scanning) and in situ (geomorphic mapping and ERT investigations) techniques, which allowed us to better understand the structural connectivity which conditions the landslide hazard in such complex morphogenetic conditions, outlining the present potential of the regional seismo-climatic context to trigger potential high-magnitude chain effects. [ABSTRACT FROM AUTHOR]
Subject Terms: AIRBORNE lasers, LANDSLIDES, REMOTE sensing, ROMANIANS, MORPHOLOGY
Copyright of Remote Sensing is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
ISSN: 20724292
DOI: 10.3390/rs15225286
Database: Complementary Index