Academic Journal

Non-standard axion electrodynamics and the dual Witten effect.

Bibliographic Details
Title: Non-standard axion electrodynamics and the dual Witten effect.
Authors: Heidenreich, Ben, McNamara, Jacob, Reece, Matthew
Source: Journal of High Energy Physics; Jan2024, Vol. 2024 Issue 1, p1-34, 34p
Abstract: Standard axion electrodynamics has two closely related features. First, the coupling of a massless axion field to photons is quantized, in units proportional to the electric gauge coupling squared. Second, the equations of motion tell us that a time-dependent axion field in a background magnetic field sources an effective electric current, but a time-dependent axion field in a background electric field has no effect. These properties, which manifestly violate electric-magnetic duality, play a crucial role in experimental searches for axions. Recently, electric-magnetic duality has been used to motivate the possible existence of non-standard axion couplings, which can both violate the usual quantization rule and exchange the roles of electric and magnetic fields in axion electrodynamics. We show that these non-standard couplings can be derived from SL(2,ℤ) duality, but that they come at a substantial cost: in non-standard axion electrodynamics, all electrically charged particles become dyons when the axion traverses its field range, in a dual form of the standard Witten effect monodromy. This implies that there are dyons near the weak scale, leads to a large axion mass induced by Standard Model fermion loops, and dramatically alters Higgs physics. We conclude that non-standard axion electrodynamics, although interesting to consider in abstract quantum field theory, is not phenomenologically viable. [ABSTRACT FROM AUTHOR]
Copyright of Journal of High Energy Physics is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
ISSN: 11266708
DOI: 10.1007/JHEP01(2024)120
Database: Complementary Index