Academic Journal

Influence of cloud retrieval errors due to three-dimensional radiative effects on calculations of broadband shortwave cloud radiative effect.

Bibliographic Details
Title: Influence of cloud retrieval errors due to three-dimensional radiative effects on calculations of broadband shortwave cloud radiative effect.
Authors: Ademakinwa, Adeleke S., Tushar, Zahid H., Zheng, Jianyu, Wang, Chenxi, Purushotham, Sanjay, Wang, Jianwu, Meyer, Kerry G., Várnai, Tamas, Zhang, Zhibo
Source: Atmospheric Chemistry & Physics; 2024, Vol. 24 Issue 5, p3093-3114, 22p
Abstract: We investigate how cloud retrieval errors due to the three-dimensional (3D) radiative effects affect broadband shortwave (SW) cloud radiative effects (CREs) in shallow cumulus clouds. A framework based on the combination of large eddy simulations (LESs) and radiative transfer (RT) models was developed to simulate both one-dimensional (1D) and 3D radiance, as well as SW broadband fluxes. Results show that the broadband SW fluxes reflected at top of the domain, transmitted at the surface, and absorbed in the atmosphere, computed from the cloud retrievals using 1D RT (F1D∗), can provide reasonable broadband radiative energy estimates in comparison with those derived from the true cloud fields using 1D RT (F1D). The difference between these 1D-RT-simulated fluxes (F1D∗ , F1D) and the benchmark 3D RT simulations computed from the true cloud field (F3D) depends primarily on the horizontal transport of photons in 3D RT, whose characteristics vary with the sun's geometry. When the solar zenith angle (SZA) is 5°, the domain-averaged F1D∗ values are in excellent agreement with the F3D , all within 7 % relative CRE bias. When the SZA is 60°, the CRE differences between calculations from F1D∗ and F3D are determined by how the cloud side-brightening and darkening effects offset each other in the radiance, retrieval, and broadband fluxes. This study suggests that although the cloud property retrievals based on the 1D RT theory may be biased due to the 3D radiative effects, they still provide CRE estimates that are comparable to or better than CREs calculated from the true cloud properties using 1D RT. [ABSTRACT FROM AUTHOR]
Subject Terms: CUMULUS clouds, LARGE eddy simulation models, RADIATION, ZENITH distance, RADIATIVE transfer
Copyright of Atmospheric Chemistry & Physics is the property of Copernicus Gesellschaft mbH and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
ISSN: 16807316
DOI: 10.5194/acp-24-3093-2024
Database: Complementary Index