Academic Journal

Effects of Poly(Vinylidene Fluoride-co-Hexafluoropropylene) Nanocomposite Membrane on Reduction in Microbial Load and Heavy Metals in Surface Water Samples.

Bibliographic Details
Title: Effects of Poly(Vinylidene Fluoride-co-Hexafluoropropylene) Nanocomposite Membrane on Reduction in Microbial Load and Heavy Metals in Surface Water Samples.
Authors: Macevele, Lutendo Evelyn, Moganedi, Kgabo Lydia Maureen, Magadzu, Takalani
Source: Journal of Composites Science; Apr2024, Vol. 8 Issue 4, p119, 15p
Abstract: In this work, nanocomposite membranes were prepared using silver nanoparticles (Ag) attached to poly(amidoamine) dendrimer (P)-functionalised multi-walled carbon nanotubes (CNTs) blended with poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) polymeric membranes (i.e., AgP-CNT/PVDF-HFP) via the phase inversion method. The nanocomposites were characterised and analysed via transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), thermal gravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET) analysis. The TEM and EDX analyses confirmed the presence of Ag nanoparticles on the nanocomposites, while the SEM and BET data showed the spongy morphology of the nanocomposite membranes with improved surface areas. The sample analysis of surface water collected from the Sekhukhune district, Limpopo Province, South Africa indicated that the water could not be used for human consumption without being treated. The nanocomposite membranes significantly reduced the physicochemical parameters of the sampled water, such as turbidity, TSS, TDS and carbonate hardness, to 4 NTU, 7 mg/L, 7.69 mg/L and 5.9 mg/L, respectively. Significant improvements in microbial load (0 CFU/mL) and BOD (3.0 mg/L) reduction were noted after membrane treatment. Furthermore, toxic heavy metals such as chromium, cadmium and nickel were remarkably reduced to 0.0138, 0.0012 and 0.015 mg/L, respectively. The results clearly suggest that the AgP-CNT/PVDF-HFP nanocomposite membrane can be used for surface water treatment. [ABSTRACT FROM AUTHOR]
Subject Terms: HEAVY metals, METALLIC surfaces, WATER sampling, NANOCOMPOSITE materials, MULTIWALLED carbon nanotubes, POLYVINYLIDENE fluoride, THERMOGRAVIMETRY
Geographic Terms: LIMPOPO (South Africa)
Copyright of Journal of Composites Science is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
ISSN: 2504477X
DOI: 10.3390/jcs8040119
Database: Complementary Index