Public Traceability in Traitor Tracing Schemes.

Bibliographic Details
Title: Public Traceability in Traitor Tracing Schemes.
Authors: Cramer, Ronald, Chabanne, Hervé, Duong Hieu Phan, Pointcheval, David
Source: Advances in Cryptology - EUROCRYPT 2005; 2005, p542-558, 17p
Abstract: Traitor tracing schemes are of major importance for secure distribution of digital content. They indeed aim at protecting content providers from colluding users to build pirate decoders. If such a collusion happens, at least one member of the latter collusion will be detected. Several solutions have already been proposed in the literature, but the most important problem to solve remains having a very good ciphertext/plaintext rate. At Eurocrypt '02, Kiayias and Yung proposed the first scheme with such a constant rate, but still not optimal. In this paper, granted bilinear maps, we manage to improve it, and get an "almost" optimal scheme, since this rate is asymptotically 1. Furthermore, we introduce a new feature, the "public traceability", which means that the center can delegate the tracing capability to any "untrusted" person. This is not the first use of bilinear maps for traitor tracing applications, but among the previous proposals, only one has remained unbroken: we present an attack by producing an anonymous pirate decoder. We furthermore explain the flaw in their security analysis. For our scheme, we provide a complete proof, based on new computational assumptions, related to the bilinear Diffie-Hellman ones, in the standard model. [ABSTRACT FROM AUTHOR]
Copyright of Advances in Cryptology - EUROCRYPT 2005 is the property of Springer eBooks and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
DOI: 10.1007/11426639_32
Database: Supplemental Index