An experimental investigation into heatless self-humidifying breathing system: [a thesis submitted to Auckland University of Technology in partial fulfilment of the requirements for the degree of Master of Engineering (ME), 2022] / Ahmed Kaleem Muez Al-Attar ; supervisor: Ahmed Al-jumaily.

Many developments have been conducted on heat and moisture exchange devices to recover heat and moisture from expired air to condition the inspired air for lung supportive devices. Available methods typically require an external heat source to achieve the objectives. However, most available HME devi...

Full description

Saved in:
Bibliographic Details
Main Author: Al-Attar, Ahmed Kaleem Muez (Author)
Corporate Author: Auckland University of Technology. School of Engineering, Computer and Mathematical Sciences
Format: Ethesis
Language:English
Subjects:
Online Access:Click here to access this resource online
Description
Summary:Many developments have been conducted on heat and moisture exchange devices to recover heat and moisture from expired air to condition the inspired air for lung supportive devices. Available methods typically require an external heat source to achieve the objectives. However, most available HME devices have limited capabilities, such as delivering insufficient heat and moisture to the patient, causing breathing restriction and increasing dead space levels in the system. The Institute of Biomedical Technologies (IBTec) at Auckland University of Technology (AUT) has developed a novel moisture exchanger material for a self-humidification feature. However, this material requires a micro-electrical heat generator as a heat source to achieve its objectives. The device absorbs water vapor from human exhalation when the surrounding temperature is lower than its thermal threshold and releases the vapor when temperature increases by the micro-electrical heat generator above that edge. This research aims to investigate further the possibilities of optimizing this respiratory supporting system to become a heatless system and eliminate the need for the micro-electrical heat generator by integrating a suitable self-heating element utilizing an exothermic chemical reaction to absorb heat during the exhalation process and delivers the heat in the inhalation process. Such development is expected to reduce device expense, power usage, and size of the breathing system, become user-friendly, and increase efficiency safely and securely. This research will investigate different approaches to develop and optimize a new system with self-humidification and heatless features.
Physical Description:1 online resource
Bibliography:Includes bibliographical references.
Access:Embargoed until Sunday, 15 June 2025.
Requests
Request this item Request this AUT item so you can pick it up when you're at the library.
Interlibrary Loan With Interlibrary Loan you can request the item from another library. It's a free service.