Towards optimal point cloud processing for 3D reconstruction / Guoxiang Zhang, YangQuan Chen.

This SpringerBrief presents novel methods of approaching challenging problems in the reconstruction of accurate 3D models and serves as an introduction for further 3D reconstruction methods. It develops a 3D reconstruction system that produces accurate results by cascading multiple novel loop detect...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Guoxiang (Author), Chen, YangQuan, 1966- (Author)
Format: Ebook
Language:English
Published: Cham : Springer, [2022]
Series:SpringerBriefs in electrical and computer engineering. Signal processing.
Subjects:
Online Access:Springer eBooks
Description
Summary:This SpringerBrief presents novel methods of approaching challenging problems in the reconstruction of accurate 3D models and serves as an introduction for further 3D reconstruction methods. It develops a 3D reconstruction system that produces accurate results by cascading multiple novel loop detection, sifting, and optimization methods. The authors offer a fast point cloud registration method that utilizes optimized randomness in random sample consensus for surface loop detection. The text also proposes two methods for surface-loop sifting. One is supported by a sparse-feature-based optimization graph. This graph is more robust to different scan patterns than earlier methods and can cope with tracking failure and recovery. The other is an offline algorithm that can sift loop detections based on their impact on loop optimization results and which is enabled by a dense map posterior metric for 3D reconstruction and mapping performance evaluation works without any costly ground-truth data. The methods presented in Towards Optimal Point Cloud Processing for 3D Reconstruction will be of assistance to researchers developing 3D modelling methods and to workers in the wide variety of fields that exploit such technology including metrology, geological animation and mass customization in smart manufacturing.
Physical Description:1 online resource (xix, 87 pages) : illustrations (chiefly colour).
Bibliography:Includes bibliographical references and index.
ISBN:3030961095
9783030961091
3030961109
9783030961107
ISSN:2196-4084
Availability
Requests
Request this item Request this AUT item so you can pick it up when you're at the library.
Interlibrary Loan With Interlibrary Loan you can request the item from another library. It's a free service.