Towards analytical chaotic evolutions in brusselators / Albert C. J. Luo.

"The Brusselator is a mathematical model for autocatalytic reaction, which was proposed by Ilya Prigogine and his collaborators at the Université Libre de Bruxelles. The dynamics of the Brusselator gives an oscillating reaction mechanism for an autocatalytic, oscillating chemical reaction. The...

Full description

Saved in:
Bibliographic Details
Main Authors: Luo, Albert C. J. (Author), Guo, Siyu (Author)
Format: Ebook
Language:English
Published: Cham, Switzerland : Springer, 2020.
Series:Synthesis lectures on mechanical engineering ; #27.
Subjects:
Online Access:Springer Nature Synthesis Collection of Technology (R0) eBook Collection 2020
Description
Summary:"The Brusselator is a mathematical model for autocatalytic reaction, which was proposed by Ilya Prigogine and his collaborators at the Université Libre de Bruxelles. The dynamics of the Brusselator gives an oscillating reaction mechanism for an autocatalytic, oscillating chemical reaction. The Brusselator is a slow-fast oscillating chemical reaction system. The traditional analytical methods cannot provide analytical solutions of such slow-fast oscillating reaction, and numerical simulations cannot provide a full picture of periodic evolutions in the Brusselator. In this book, the generalized harmonic balance methods are employed for analytical solutions of periodic evolutions of the Brusselator with a harmonic diffusion. The bifurcation tree of period-1 motion to chaos of the Brusselator is presented through frequency-amplitude characteristics, which be measured in frequency domains. Two main results presented in this book are:• analytical routes of periodical evolutions to chaos and• independent period-(2���� + 1) evolution to chaos.This book gives a better understanding of periodic evolutions to chaos in the slow-fast varying Brusselator system, and the bifurcation tree of period-1 evolution to chaos is clearly demonstrated, which can help one understand routes of periodic evolutions to chaos in chemical reaction oscillators. The slow-fast varying systems extensively exist in biological systems and disease dynamical systems. The methodology presented in this book can be used to investigate the slow-fast varying oscillating motions in biological systems and disease dynamical systems for a better understanding of how infectious diseases spread."--Publisher's website.
Physical Description:1 online resource (xiii, 94 pages) : illustrations (some colour).
Bibliography:Includes bibliographical references.
ISBN:1681738244
1681738252
1681738260
3031796616
3031796624
9781681738246
9781681738253
9781681738260
9783031796616
9783031796623
Requests
Request this item Request this AUT item so you can pick it up when you're at the library.
Interlibrary Loan With Interlibrary Loan you can request the item from another library. It's a free service.